Affiliation:
1. University of Leipzig, Heart Center Leipzig, Leipzig, Germany; and
2. K. G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
Abstract
Heart failure patients with preserved left ventricular ejection fraction (HFpEF) have endothelial dysfunction, but the underlying molecular mechanisms remain unknown. In addition, whether exercise training improves endothelial function in HFpEF is still controversial. The present study therefore aimed to determine the functional and molecular alterations in the endothelium associated with HFpEF, while further assessing the effects of high-intensity interval training (HIT). Female Dahl salt-sensitive rats were randomized for 28 wk into the following groups: 1) control: fed 0.3% NaCl; 2) HFpEF: fed 8% NaCl; and 3) HFpEF + HIT: animals fed 8% NaCl and HIT treadmill exercise. Echocardiography and invasive hemodynamic measurements were used to assess diastolic dysfunction. Endothelial function of the aorta was measured in vitro. Expression of endothelial nitric oxide synthase (eNOS), nicotinamide adenine dinucleotide phosphate-oxidase [NAD(P)H oxidase], and advanced glycation end product (AGE)-modified proteins were quantified by Western blot, and zymography quantified matrix metalloproteinase (MMP) activity. In this model of HFpEF, endothelium-dependent and -independent vasodilation was impaired. However, this was prevented by HIT. In HFpEF protein expression of eNOS was reduced by 47%, but MMP-2 and MMP-9 activity was elevated by 186 and 68%. The expression of AGE-modified proteins was increased by 106%. All of these changes were prevented by HIT. Endothelial function was impaired in this model of HFpEF, which was associated with reduced expression of eNOS, increased MMP activity, and increased AGE-modified proteins. HIT was able to attenuate both these functional and molecular alterations. These findings therefore suggest HFpEF induces endothelial dysfunction, but this is reversible by HIT.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献