Load-mediated downregulation of myostatin mRNA is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis

Author:

Kim Jeong-su,Petrella John K.,Cross James M.,Bamman Marcas M.

Abstract

Myostatin is a potent inhibitor of myogenesis; thus differential expression might be expected across individuals varying in responsiveness to myogenic stimuli. We hypothesized that myostatin would be differentially regulated across humans with markedly different hypertrophic responses to resistance training (RT; 16 wk). Targets were assessed in muscle biopsies at baseline (T1) and 24 h after the first (T2) and last (T3) loading bouts in previously untrained subjects statistically clustered based on mean myofiber hypertrophy as extreme (Xtr; n = 17, 2,475 μm2), modest ( n = 32, 1,111 μm2), and nonresponders ( n = 17, −16 μm2). We assessed protein levels of latent full-length myostatin protein complex and its propeptide; mRNA levels of myostatin, cyclin D1, p21cip1, p27kip1, and activin receptor IIB; and serum myostatin protein concentration. Total RNA concentration increased by T3 in nonresponders (37%) and modest responders (40%), while it increased acutely (T2) only in Xtr (26%), remaining elevated at T3 (40%). Myostatin mRNA decreased at T2 (−44%) and remained suppressed at T3 (−52%), but not differentially across clusters. Cyclin D1 mRNA increased robustly by T2 (38%) and T3 (74%). The increase at T2 was driven by Xtr (62%, P < 0.005), and Xtr had the largest elevation at T3 (82%, P < 0.001). No effects were found for other target transcripts. Myostatin protein complex increased 44% by T3 ( P < 0.001), but not differentially by cluster. Myostatin protein complex propeptide and circulating myostatin were not influenced by RT or cluster. Overall, we found no compelling evidence that myostatin is differentially regulated in humans demonstrating robust RT-mediated myofiber hypertrophy vs. those more resistant to growth.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3