Affiliation:
1. Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
Abstract
Acute respiratory distress syndrome is a pulmonary disease with a mortality rate of ∼40% and 75,000 deaths annually in the United States. Mechanical ventilation restores airway patency and gas transport but leads to ventilator-induced lung injury. Furthermore, surfactant replacement therapy is ineffective due to surfactant delivery difficulties and deactivation by vascular proteins leaking into the airspace. Here, we demonstrated that surfactant function can be substantially improved (up to 50%) in situ in an in vitro pulmonary airway model using unconventional flows that incorporate a short-term retraction of the air-liquid interface, leading to a net decrease in cellular damage. Computational fluid dynamic simulations provided insights into this method and demonstrated the physicochemical hydrodynamic foundation for the improved surfactant microscale transport and mobility. This study may provide a starting point for developing novel ventilation waveforms to improve surfactant function in edematous airways.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献