Effects of oral glutamine supplementation on exercise-induced gastrointestinal permeability and tight junction protein expression

Author:

Zuhl Micah N.12,Lanphere Kathryn R.1,Kravitz Len1,Mermier Christine M.1,Schneider Suzanne1,Dokladny Karol3,Moseley Pope L.3

Affiliation:

1. Department of Health, Exercise, and Sport Science, University of New Mexico, Albuquerque, New Mexico;

2. Department of Health Sciences, Central Michigan University, Mt. Pleasant, Michigan

3. Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico; and

Abstract

The objectives of this study are threefold: 1) to assess whether 7 days of oral glutamine (GLN) supplementation reduces exercise-induced intestinal permeability; 2) whether supplementation prevents the proinflammatory response; and 3) whether these changes are associated with upregulation of the heat shock response. On separate occasions, eight human subjects participated in baseline testing and in GLN and placebo (PLA) supplementation trials, followed by a 60-min treadmill run. Intestinal permeability was higher in the PLA trial compared with baseline and GLN trials (0.0604 ± 0.047 vs. 0.0218 ± 0.008 and 0.0272 ± 0.007, respectively; P < 0.05). IκBα expression in peripheral blood mononuclear cells was higher 240 min after exercise in the GLN trial compared with the PLA trial (1.411 ± 0.523 vs. 0.9839 ± 0.343, respectively; P < 0.05). In vitro using the intestinal epithelial cell line Caco-2, we measured effects of GLN supplementation (0, 4, and 6 mM) on heat-induced (37° or 41.8°C) heat shock protein 70 (HSP70), heat shock factor-1 (HSF-1), and occludin expression. HSF-1 and HSP70 levels increased in 6 mM supplementation at 41°C compared with 0 mM at 41°C (1.785 ± 0.495 vs. 0.6681 ± 0.290, and 1.973 ± 0.325 vs. 1.133 ± 0.129, respectively; P < 0.05). Occludin levels increased after 4 mM supplementation at 41°C and 6 mM at 41°C compared with 0 mM at 41°C (1.236 ± 0.219 and 1.849 ± 0.564 vs. 0.7434 ± 0.027, respectively; P < 0.001). GLN supplementation prevented exercise-induced permeability, possibly through HSF-1 activation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3