Identifying cardiovascular neurocircuitry involved in the exercise pressor reflex in humans using functional neurosurgery

Author:

Basnayake Shanika D.1,Hyam Jonathan A.12,Pereira Erlick A.2,Schweder Patrick M.2,Brittain John-Stuart2,Aziz Tipu Z.12,Green Alexander L.12,Paterson David J.1

Affiliation:

1. Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Oxford;

2. Nuffield Department of Surgery, University of Oxford and Department of Neurosurgery, The West Wing, John Radcliffe Hospital, Oxford, United Kingdom

Abstract

Groups III and IV afferents carry sensory information regarding the muscle exercise pressor reflex, although the central integrating circuits of the reflex in humans are still poorly defined. Emerging evidence reports that the periaqueductal gray (PAG) could be a major site for integrating the “central command” component that initiates the cardiovascular response to exercise, since this area is activated during exercise and direct stimulation of the dorsal PAG causes an increase in arterial blood pressure (ABP) in humans. Here we recorded local field potentials (LFPs) from various “deep” brain nuclei during exercise tasks designed to elicit the muscle pressor reflex. The patients studied had undergone neurosurgery for the treatment of movement or pain disorders, thus had electrodes implanted stereotactically either in the PAG, subthalamic nucleus, globus pallidus interna, thalamus, hypothalamus, or anterior cingulate cortex. Fast Fourier transform analysis was applied to the neurograms to identify the power of fundamental spectral frequencies. Our PAG patients showed significant increases in LFP power at frequencies from 4 to 8 Hz ( P < 0.01), 8 to 12 Hz ( P < 0.001), and 12 to 25 Hz ( P < 0.001). These periods were associated with maintained elevated ABP during muscle occlusion following exercise. Further increases in exercise intensity resulted in corresponding increases in PAG activity and ABP. No significant changes were seen in the activity of other nuclei during occlusion. These electrophysiological data provide direct evidence for a role of the PAG in the integrating neurocircuitry of the exercise pressor reflex in humans.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pulmonary gas exchange and ventilatory efficiency during exercise in health and diseases;Expert Review of Respiratory Medicine;2024-06-02

2. Control of Breathing;Seminars in Respiratory and Critical Care Medicine;2023-07-11

3. Passive limb training modulates respiratory rhythmic bursts;Scientific Reports;2023-05-04

4. The exercise pressor reflex: An update;Clinical Autonomic Research;2022-06-21

5. The physiology and pathophysiology of exercise hyperpnea;Respiratory Neurobiology - Physiology and Clinical Disorders, Part I;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3