Chondroitin sulfate attenuates acid-induced augmentation of the mechanical response in rat thin-fiber muscle afferents in vitro

Author:

Hotta Norio1,Kubo Asako2,Mizumura Kazue12

Affiliation:

1. College of Life and Health Sciences, Chubu University, Aichi, Japan

2. Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan

Abstract

Exercise-induced tissue acidosis augments the exercise pressor reflex (EPR). One reason for this may be acid-induced mechanical sensitization in thin-fiber muscle afferents, which is presumably related to EPR. Acid-induced sensitization to mechanical stimulation has been reported to be attenuated in cultured primary-sensory neurons by exogenous chondroitin sulfate (CS) and chondroitinase ABC, suggesting that the extracellular matrix CS proteoglycan is involved in this sensitization. The purpose of this study was to clarify whether acid-induced sensitization of the mechanical response in the thin-fiber muscle afferents is also suppressed by exogenous CS and chondroitinase ABC using a single-fiber recording technique. A total of 88 thin fibers (conduction velocity <15.0 m/s) dissected from 86 male Sprague-Dawley rats were identified. A buffer solution at pH 6.2 lowered their mechanical threshold and increased their response magnitude. Five minutes after CS (0.3 and 0.03%) injection near the receptive field, these acid-induced changes were significantly reduced. No significant difference in attenuation was detected between the two CS concentrations. Chondroitinase ABC also significantly attenuated this sensitization. The control solution (0% CS) did not significantly alter the mechanical sensitization. Furthermore, no significant differences were detected in this sensitization and CS-based suppression between fibers with and without acid-sensitive channels [transient receptor potential vanilloid 1 (TRPV1), acid-sensing ion channel (ASIC)]. In addition, this mechanical sensitization was not changed by TRPV1 and ASIC antagonists, suggesting that these ion channels are not involved in the acid-induced mechanical sensitization of muscle thin-fiber afferents. In conclusion, CS administration has a potential to attenuate the acidosis-induced exaggeration of muscle mechanoreflex. NEW & NOTEWORTHY We found that exogenous chondroitin sulfate attenuated acid-induced mechanical sensitization in thin-fiber muscle afferents that play a crucial role in the exercise pressor reflex. This finding suggests that extracellular matrix chondroitin sulfate proteoglycans may be involved in the mechanism of acid-induced mechanical sensitization and that daily intake of chondroitin sulfate may potentially attenuate this amplification of muscle mechanoreflex and therefore reduce muscle pain related to acidic muscle conditions.

Funder

Japan Society for the Promotion of Science (JSPS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3