Enhanced myocyte-based biosensing of the blood-borne signals regulating chronotropy

Author:

Edelberg Jay M.12,Jacobson Jason T.1,Gidseg David S.3,Tang Lilong1,Christini David J.14

Affiliation:

1. Departments of Medicine,

2. Cell Biology, and

3. Weill Medical College of Cornell University, New York, New York 10021

4. Physiology and Biophysics,

Abstract

Biosensors play a critical role in the real-time determination of relevant functional physiological needs. However, typical in vivo biosensors only approximate endogenous function via the measurement of surrogate signals and, therefore, may often lack a high degree of dynamic fidelity with physiological requirements. To overcome this limitation, we have developed an excitable tissue-based implantable biosensor approach, which exploits the inherent electropotential input-output relationship of cardiac myocytes to measure the physiological regulatory inputs of chronotropic demand via the detection of blood-borne signals. In this study, we report the improvement of this application through the modulation of host-biosensor communication via the enhancement of vascularization of chronotropic complexes in mice. Moreover, in an effort to further improve translational applicability as well as molecular plasticity, we have advanced this approach by employing stem cell-derived cardiac myocyte aggregates in place of whole cardiac tissue. Overall, these studies demonstrate the potential of biologically based biosensors to predict endogenous physiological dynamics and may facilitate the translation of this approach for in vivo monitoring.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3