Importance of pH regulation and lactate/H+transport capacity for work production during supramaximal exercise in humans

Author:

Messonnier Laurent,Kristensen Michael,Juel Carsten,Denis Christian

Abstract

We examine the influence of the cytosolic and membrane-bound contents of carbonic anhydrase (CA; CAII, CAIII, CAIV, and CAXIV) and the muscle content of proteins involved in lactate and proton transport [monocarboxylate transporter (MCT) 1, MCT4, and Na+/H+exchanger 1 (NHE1)] on work capacity during supramaximal exercise. Eight healthy, sedentary subjects performed exercises at 120% of the work rate corresponding to maximal oxygen uptake (Ẇmax) until exhaustion in placebo (Con) and metabolic alkalosis (Alk) conditions. The total (Wtot) and supramaximal work performed (Wsup) was measured. Muscle biopsies were obtained before and immediately after standardized exercises (se) at 120% Ẇmaxin both conditions to determine the content of the targeted proteins, the decrease in muscle pH (ΔpHm), and the muscle lactate accumulation ([Lac]m) per joule of Wsup(ΔpHm/Wsup-seand Δ[Lac]m/Wsup-se, respectively) and the dynamic buffer capacity. In Con, Wsupwas negatively correlated with ΔpHm/Wsup-se, positively correlated with Δ[Lac]m/Wsup-seand MCT1, and tended to be positively correlated with MCT4 and NHE1. CAII + CAIII were correlated positively with ΔpHm/Wsup-seand negatively with Δ[Lac]m/Wsup-se, while CAIV was positively related to Wtot. The changes in Wsupwith Alk were correlated positively with those in dynamic buffer capacity and negatively with Wsupin Con. Performance improvement with Alk was greater in subjects having a low content of proteins involved in pH regulation and lactate/proton transport. These results show the importance of pH regulating mechanisms and lactate/proton transport on work capacity and the role of the CA to delay decrease in pHmand accumulation in [Lac]mduring supramaximal exercise in humans.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3