Author:
Messonnier Laurent,Kristensen Michael,Juel Carsten,Denis Christian
Abstract
We examine the influence of the cytosolic and membrane-bound contents of carbonic anhydrase (CA; CAII, CAIII, CAIV, and CAXIV) and the muscle content of proteins involved in lactate and proton transport [monocarboxylate transporter (MCT) 1, MCT4, and Na+/H+exchanger 1 (NHE1)] on work capacity during supramaximal exercise. Eight healthy, sedentary subjects performed exercises at 120% of the work rate corresponding to maximal oxygen uptake (Ẇmax) until exhaustion in placebo (Con) and metabolic alkalosis (Alk) conditions. The total (Wtot) and supramaximal work performed (Wsup) was measured. Muscle biopsies were obtained before and immediately after standardized exercises (se) at 120% Ẇmaxin both conditions to determine the content of the targeted proteins, the decrease in muscle pH (ΔpHm), and the muscle lactate accumulation ([Lac]m) per joule of Wsup(ΔpHm/Wsup-seand Δ[Lac]m/Wsup-se, respectively) and the dynamic buffer capacity. In Con, Wsupwas negatively correlated with ΔpHm/Wsup-se, positively correlated with Δ[Lac]m/Wsup-seand MCT1, and tended to be positively correlated with MCT4 and NHE1. CAII + CAIII were correlated positively with ΔpHm/Wsup-seand negatively with Δ[Lac]m/Wsup-se, while CAIV was positively related to Wtot. The changes in Wsupwith Alk were correlated positively with those in dynamic buffer capacity and negatively with Wsupin Con. Performance improvement with Alk was greater in subjects having a low content of proteins involved in pH regulation and lactate/proton transport. These results show the importance of pH regulating mechanisms and lactate/proton transport on work capacity and the role of the CA to delay decrease in pHmand accumulation in [Lac]mduring supramaximal exercise in humans.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
112 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献