Mast cell degranulation and de novo histamine formation contribute to sustained postexercise vasodilation in humans

Author:

Romero Steven A.1,McCord Jennifer L.1,Ely Matthew R.1,Sieck Dylan C.1,Buck Tahisha M.1,Luttrell Meredith J.1,MacLean David A.2,Halliwill John R.1ORCID

Affiliation:

1. Department of Human Physiology, University of Oregon, Eugene, Oregon; and

2. Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada

Abstract

In humans, acute aerobic exercise elicits a sustained postexercise vasodilation within previously active skeletal muscle. This response is dependent on activation of histamine H1and H2receptors, but the source of intramuscular histamine remains unclear. We tested the hypothesis that interstitial histamine in skeletal muscle would be increased with exercise and would be dependent on de novo formation via the inducible enzyme histidine decarboxylase and/or mast cell degranulation. Subjects performed 1 h of unilateral dynamic knee-extension exercise or sham (seated rest). We measured the interstitial histamine concentration and local blood flow (ethanol washout) via skeletal muscle microdialysis of the vastus lateralis. In some probes, we infused either α-fluoromethylhistidine hydrochloride (α-FMH), a potent inhibitor of histidine decarboxylase, or histamine H1/H2-receptor blockers. We also measured interstitial tryptase concentrations, a biomarker of mast cell degranulation. Compared with preexercise, histamine was increased after exercise by a change (Δ) of 4.2 ± 1.8 ng/ml ( P < 0.05), but not when α-FMH was administered (Δ−0.3 ± 1.3 ng/ml, P = 0.9). Likewise, local blood flow after exercise was reduced to preexercise levels by both α-FMH and H1/H2blockade. In addition, tryptase was elevated during exercise by Δ6.8 ± 1.1 ng/ml ( P < 0.05). Taken together, these data suggest that interstitial histamine in skeletal muscle increases with exercise and results from both de novo formation and mast cell degranulation. This suggests that exercise produces an anaphylactoid signal, which affects recovery, and may influence skeletal muscle blood flow during exercise.NEW & NOTEWORTHY Blood flow to previously active skeletal muscle remains elevated following an acute bout of aerobic exercise and is dependent on activation of histamine H1and H2receptors. The intramuscular source of histamine that drives this response to exercise has not been identified. Using intramuscular microdialysis in exercising humans, we show both mast cell degranulation and formation of histamine by histidine decarboxylase contributes to the histamine-mediated vasodilation that occurs following a bout of aerobic exercise.

Funder

HHS | National Institutes of Health (NIH)

American Heart Association (AHA)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3