Vitamin D3 intake modulates diaphragm but not peripheral muscle force in young mice

Author:

Ray Andrew D.1,Personius Kirkwood E.1,Williamson David L.2,Dungan Cory M.2,Dhillon Samjot S.3,Hershberger Pamela A.4

Affiliation:

1. Department of Rehabilitation Science, University at Buffalo, Buffalo, New York;

2. Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York;

3. Department of Medicine, Thoracic Oncology, Roswell Park Cancer Institute, Buffalo, New York; and

4. Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York

Abstract

Recent data support an important role for vitamin D in respiratory health. We tested the hypothesis that dietary vitamin D3 (VD3) intake modulates diaphragm (DIA) strength. Four-week-old female A/J mice ( n = 10/group) were randomized to receive diets containing 100 IU VD3/kg (low), 1,000 IU VD3/kg (reference), or 10,000 IU VD3/kg (pharmacologic). After 6 wk of dietary intervention, plasma 25-hydroxyvitamin D3 (25D3) levels, DIA and extensor digitorum longus (EDL) in vitro contractile properties, and fiber cross-sectional area (CSA) were measured. Myosin heavy chain (MHC) composition and Akt/Foxo3A growth signaling were studied in the DIA and tibialis anterior. Mice fed the low, reference, and pharmacologic diets had average 25D3 levels of 7, 21, and 59 ng/ml, respectively. Maximal DIA force, twitch force, and fiber CSA were reduced 26%, 28%, and 10% ( P < 0.01), respectively, in mice receiving the low-VD3 diet compared with the reference and pharmacologic diets. EDL force parameters were unaltered by diet. Effects of VD3 intake on DIA force were not observed in mice that began dietary intervention at 12 wk of age. VD3 intake did not alter the MHC composition of the DIA, indicating that decreases in force and CSA in young mice were not due to a switch in fiber type. Paradoxically, low VD3 intake was associated with activation of anabolic signaling in muscle (hyperphosphorylation of Akt and Foxo3A and decreased expression of autophagy marker LC3). These studies identify a potential role of dietary VD3 in regulating DIA development and insulin sensitivity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3