Author:
Kawada Toru,Kitagawa Hirotoshi,Yamazaki Toji,Akiyama Tsuyoshi,Kamiya Atsunori,Uemura Kazunori,Mori Hidezo,Sugimachi Masaru
Abstract
Although hypothermia is one of the most powerful modulators that can reduce ischemic injury, the effects of hypothermia on the function of the cardiac autonomic nerves in vivo are not well understood. We examined the effects of hypothermia on the myocardial interstitial norepinephrine (NE) and ACh releases in response to acute myocardial ischemia and to efferent sympathetic or vagal nerve stimulation in anesthetized cats. We induced acute myocardial ischemia by coronary artery occlusion. Compared with normothermia ( n = 8), hypothermia at 33°C ( n = 6) suppressed the ischemia-induced NE release [63 nM (SD 39) vs. 18 nM (SD 25), P < 0.01] and ACh release [11.6 nM (SD 7.6) vs. 2.4 nM (SD 1.3), P < 0.01] in the ischemic region. Under hypothermia, the coronary occlusion increased the ACh level from 0.67 nM (SD 0.44) to 6.0 nM (SD 6.0) ( P < 0.05) and decreased the NE level from 0.63 nM (SD 0.19) to 0.40 nM (SD 0.25) ( P < 0.05) in the nonischemic region. Hypothermia attenuated the nerve stimulation-induced NE release from 1.05 nM (SD 0.85) to 0.73 nM (SD 0.73) ( P < 0.05, n = 6) and ACh release from 10.2 nM (SD 5.1) to 7.1 nM (SD 3.4) ( P < 0.05, n = 5). In conclusion, hypothermia attenuated the ischemia-induced NE and ACh releases in the ischemic region. Moreover, hypothermia also attenuated the nerve stimulation-induced NE and ACh releases. The Bezold-Jarisch reflex evoked by the left anterior descending coronary artery occlusion, however, did not appear to be affected under hypothermia.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献