Theoretical analysis of effects of blood substitute affinity and cooperativity on organ oxygen transport

Author:

Kavdia Mahendra1,Pittman Roland N.2,Popel Aleksander S.1

Affiliation:

1. Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; and

2. Department of Physiology, Virginia Commonwealth University, Richmond, Virginia 23298

Abstract

Hemoglobin-based O2carriers (HBOCs), which are developed as an alternative to blood transfusion, provide O2 delivery. At present, there is no model to predict the O2 transport for a red blood cell-HBOC mixture on a whole organ basis. On the basis of the first principles of mass balance, a model of O2 transport for an organ was derived to calculate venous Po 2(PvO2 ) for a given inlet arterial Po 2 (PaO2 ), blood flow, and oxygen consumption. The model was validated by using several in vivo animal studies on HBOC administration for a wide range of HBOC oxygen-binding parameters and predicted PvO2 for various PaO2 in the same species. The model was also used to predict the effect of HBOC affinity and cooperativity on PvO2 for humans. The results indicate that PvO2 can be increased at a constant blood flow-to-oxygen consumption ratio by reducing the affinity of HBOC for normoxia and mild hypoxia; however, a high-affinity HBOC would be more efficient in maintaining higher PvO2 for severe hypoxia (PaO2 < 40 Torr).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3