Absence of dynamic hyperinflation during exhaustive exercise in severe COPD reflects submaximal IC maneuvers rather than a nonhyperinflator phenotype

Author:

Luo Yuan-Ming123,Qiu Zhi-Hui1,Wang Yuan1,He Bai-Ting1,Qin Hua1,Xiao Si-chang1,Luo Ying-mei4,Steier Joerg2,Moxham John2,Polkey Michael I4

Affiliation:

1. National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China

2. Department of Respiratory Medicine, King’s College London School of Medicine, London, United Kingdom

3. College of Medicine and Public Health, Flinders University, Adelaide, Australia

4. Respiratory Muscle Laboratory, Heart and Lung Institute, Imperial College and the Royal Brompton Hospital, London, United Kingdom

Abstract

Approximately 20% of chronic obstructive pulmonary disease (COPD) patients have been considered to have a “nonhyperinflator phenotype.” However, this judgment depends on patients making a fully maximal inspiratory capacity (IC) maneuver at rest, since the IC during exercise is compared with this baseline measurement. We hypothesized that IC maneuvers at rest are sometimes submaximal and tested this hypothesis by measuring IC and associated neural respiratory drive at rest and during inhalation of CO2 and exercise in patients with COPD. Twenty-six COPD patients [age 66 ± 6 yr, mean forced expiratory volume in 1 s (FEV1) 40 ± 11% predicted] and 39 healthy subjects (age 39 ± 14 yr, FEV1 98 ± 12% predicted) were studied. IC and the diaphragm electromyogram (EMGdi) associated with it (EMGdi-IC) and forced inspiratory vital capacity (FIVC) and its corresponding EMGdi (EMGdi-FIVC) were measured during inhalation of 8% CO2 (8% CO2-92% O2) and room air. Incremental exhaustive cycle ergometer exercise was also performed in both patients with COPD and healthy subjects. IC, EMGdi-IC, FIVC, and EMGdi-FIVC during breathing 8% CO2 were significantly greater than those during breathing room air in both patients with COPD and healthy subjects (all P < 0.001). EMGdi-IC in patients with COPD constantly increased during exercise from 145 ± 40 µV at rest to 185 ± 52 µV at the end of exercise but change in IC was variable. Neural respiratory drive and its relevant IC increased during hypercapnia. Exercise-related hypercapnia in patients with COPD raises neural respiratory drives, which compensate for IC reduction, leading to underestimation of dynamic hyperinflation measured by IC at rest breathing room air. NEW & NOTEWORTHY Inspiratory capacity measured during hypercapnia is higher than that during eucapnia. Thus total lung capacity is not always be achieved by a standard inspiratory capacity maneuver, leading to risk of underestimation of dynamic hyperinflation in patients with severe chronic obstructive pulmonary disease after exhaustive exercise.

Funder

National key R&D Program of China

Guangdong Major Project

Guangzhou Science and Technology innovation committee

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3