Increased intramuscular lipid synthesis and low saturation relate to insulin sensitivity in endurance-trained athletes

Author:

Bergman Bryan C.1,Perreault Leigh1,Hunerdosse Devon M.1,Koehler Mary C.1,Samek Ali M.1,Eckel Robert H.1

Affiliation:

1. University of Colorado Denver School of Medicine, Aurora, Colorado

Abstract

Intramuscular triglyceride (IMTG) has received considerable attention as a potential mechanism promoting insulin resistance. Endurance-trained athletes have high amounts of IMTG but are insulin sensitive, suggesting IMTG content alone does not change insulin action. Recent data suggest increased muscle lipid synthesis protects against fat-induced insulin resistance. We hypothesized that rates of IMTG synthesis at rest would be increased in athletes compared with controls. Eleven sedentary men and 11 endurance-trained male cyclists participated in this study. An intravenous glucose tolerance test was performed to assess insulin action. After 3 days of dietary control and an overnight fast, [13C16]palmitate was infused at 0.0174 μmol·kg−1·min−1for 4 h, followed by a muscle biopsy to measure isotope incorporation into IMTG and diacylglycerol. Compared with controls, athletes were twice as insulin sensitive ( P = 0.004) and had a significantly greater resting IMTG concentration (athletes: 20.4 ± 1.6 μg IMTG/mg dry wt, controls: 14.5 ± 1.8 μg IMTG/mg dry wt, P = 0.04) and IMTG fractional synthesis rate (athletes: 1.56 ± 0.37%/h, controls: 0.61 ± 0.15%/h, P = 0.03). Stearoyl-CoA desaturase 1 mRNA expression ( P = 0.02) and protein content ( P = 0.03) were also significantly greater in athletes. Diacylglycerol, but not IMTG, saturation was significantly less in athletes compared with controls ( P = 0.002). These data indicate endurance-trained athletes have increased synthesis rates of skeletal muscle IMTG and decreased saturation of skeletal muscle diacylglycerol. Increased synthesis rates are not due to recovery from exercise and are likely adaptations to chronic endurance exercise training.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3