Affiliation:
1. School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia; and
2. Department of Physiology, University of Auckland, Auckland, New Zealand
Abstract
In brain stem slices from neonatal ( postnatal days 0–4) CD-1 mice, muscarinic ACh receptors (MAChRs) increased rhythmic inspiratory-related and tonic hypoglossal nerve discharge and depolarized single hypoglossal motoneurons (HMs) via an inward current without changing input resistance. These responses were blocked by the MAChR antagonist 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP; 100 nM). MAChRs shifted voltage-dependent activation of the hyperpolarization-activated cation current to more positive levels. MAChRs increased the HM repetitive firing rate and decreased rheobase, with both effects being blocked by 4-DAMP. Muscarinic agonists reduced the afterhyperpolarization of single action potentials (APs), suggesting that small-conductance Ca2+-dependent K+ current inhibition increased the HM firing rate. Muscarinic agonists also reduced the AP amplitude and slowed its time course, suggesting that MAChRs inhibited voltage-gated Na+ channels. To compare muscarinic excitation of single HMs to muscarinic excitatory effects on motor output in thicker brain stem slices requiring higher extracellular K+ for rhythmic activity, we tested the effects of muscarinic agonists on single HM excitability in high-K+ artificial cerebrospinal fluid (aCSF). In high-K+ aCSF, muscarinic agonists still depolarized HMs and altered AP size and shape, as in standard aCSF, but did not increase the steady-state firing rate, decrease afterhyperpolarization, or alter threshold potential. These results indicate that the basic cellular response of HMs to muscarinic receptors is excitatory, via a number of distinct mechanisms, and that this excitatory response will be largely preserved in rhythmically active brain stem slices.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献