The effect of a physiological increase in temperature on mitochondrial fatty acid oxidation in rat myofibers

Author:

Tardo-Dino Pierre-Emmanuel123ORCID,Touron Julianne1,Baugé Stéphane1,Bourdon Stéphanie1,Koulmann Nathalie123,Malgoyre Alexandra1

Affiliation:

1. Unité de Physiologie de l’Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France

2. Ecole du Val-de-Grâce, Paris, France

3. EDISS 205, Université Claude Bernard Lyon 1, Villeurbanne, France

Abstract

We investigated the effect of temperature increase on mitochondrial fatty acid (FA) and carbohydrate oxidation in the slow-oxidative skeletal muscles (soleus) of rats. We measured mitochondrial respiration at 35°C and 40°C with the physiological substrates pyruvate + 4 mM malate (Pyr) and palmitoyl-CoA (PCoA) + 0.5 mM malate + 2 mM carnitine in permeabilized myofibers under nonphosphorylating ([Formula: see text]) or phosphorylating ([Formula: see text]) conditions. Mitochondrial efficiency was calculated by the respiratory control ratio (RCR = [Formula: see text]/[Formula: see text]). We used guanosine triphosphate (GTP), an inhibitor of uncoupling protein (UCP), to study the mechanisms responsible for alterations of mitochondrial efficiency. We measured hydrogen peroxide (H2O2) production under nonphosphorylating and phosphorylating conditions at both temperatures and substrates. We studied citrate synthase (CS) and 3-hydroxyl acyl coenzyme A dehydrogenase (3-HAD) activities at both temperatures. Elevating the temperature from 35°C to 40°C increased PCoA-[Formula: see text] and decreased PCoA-RCR, corresponding to the uncoupling of oxidative phosphorylation (OXPHOS). GTP blocked the heat-induced increase of PCoA-[Formula: see text]. Rising temperature moved toward a Pyr-[Formula: see text] increase, without significance. Heat did not alter H2O2 production, resulting from either PCoA or Pyr oxidation. Heat induced an increase in 3-HAD but not in CS activities. In conclusion, heat induced OXPHOS uncoupling for PCoA oxidation, which was at least partially mediated by UCP and independent of oxidative stress. The classically described heat-induced glucose shift may actually be mostly due to a less efficient FA oxidation. These findings raise questions concerning the consequences of heat-induced alterations in mitochondrial efficiency of FA metabolism on thermoregulation. NEW & NOTEWORTHY Ex vivo exposure of skeletal myofibers to heat uncouples substrate oxidation from ADP phosphorylation, decreasing the efficiency of mitochondria to produce ATP. This heat effect alters fatty acids (FAs) more than carbohydrate oxidation. Alteration of FA oxidation involves uncoupling proteins without inducing oxidative stress. This alteration in lipid metabolism may underlie the preferential use of carbohydrates in the heat and could decrease aerobic endurance.

Funder

Direction Générale de l'Armement

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3