Carotid chemoreceptors have a limited role in mediating the hyperthermia-induced hyperventilation in exercising humans

Author:

Fujii Naoto1,Kashihara Miki1,Kenny Glen P.2,Honda Yasushi1,Fujimoto Tomomi1,Cao Yinhang1,Nishiyasu Takeshi1

Affiliation:

1. Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan

2. Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa Ontario, Canada

Abstract

Hyperthermia causes hyperventilation at rest and during exercise. We previously reported that carotid chemoreceptors partly contribute to the hyperthermia-induced hyperventilation at rest. However, given that a hyperthermia-induced hyperventilation markedly differs between rest and exercise, the results obtained at rest may not be representative of the response in exercise. Therefore, we evaluated whether carotid chemoreceptors contribute to hyperthermia-induced hyperventilation in exercising humans. Eleven healthy young men (23 ± 2 yr) cycled in the heat (37°C) at a fixed submaximal workload equal to ~55% of the individual’s predetermined peak oxygen uptake (moderate intensity). To suppress carotid chemoreceptor activity, 30-s hyperoxia breathing (100% O2) was performed at rest (before exercise) and during exercise at increasing levels of hyperthermia as defined by an increase in esophageal temperature of 0.5°C (low), 1.0°C (moderate), 1.5°C (high), and 2.0°C (severe) above resting levels. Ventilation during exercise gradually increased as esophageal temperature increased (all P ≤ 0.05), indicating that hyperthermia-induced hyperventilation occurred. Hyperoxia breathing suppressed ventilation in a greater manner during exercise (−9 to −13 l/min) than at rest (−2 ± 1 l/min); however, the magnitude of reduction during exercise did not differ at low (0.5°C) to severe (2.0°C) increases in esophageal temperature (all P > 0.05). Similarly, hyperoxia-induced changes in ventilation during exercise as assessed by percent change from prehyperoxic levels were not different at all levels of hyperthermia (~15–20%, all P > 0.05). We show that in young men carotid chemoreceptor contribution to hyperthermia-induced hyperventilation is relatively small at low-to-severe increases in body core temperature induced by moderate-intensity exercise in the heat. NEW & NOTEWORTHY Exercise-induced increases in hyperthermia cause a progressive increase in ventilation in humans. However, the mechanisms underpinning this response remain unresolved. We showed that in young men hyperventilation associated with exercise-induced hyperthermia is not predominantly mediated by carotid chemoreceptors. This study provides important new insights into the mechanism(s) underpinning the regulation of hyperthermia-induced hyperventilation in humans and suggests that factor(s) other than carotid chemoreceptors play a more important role in mediating this response.

Funder

Ministry of Education, Culture, Sports, Science, and Technology in Japan

Uehara Memorial Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3