Nasal cavity dimensions in guinea pig and rat measured by acoustic rhinometry and fluid-displacement method

Author:

Straszek Sune P.1,Pedersen Ole F.1

Affiliation:

1. Department of Environmental and Occupational Medicine, University of Aarhus, DK-8000 Aarhus, Denmark

Abstract

The purpose of the study was to measure nasal passageway dimensions in guinea pigs and rats by use of acoustic rhinometry (AR) and by a previously described fluid-displacement method (FDM) (Straszek SP, Taagehoej F, Graff S, and Pedersen OF. J Appl Physiol 95: 635–642, 2003) to investigate the potential of AR in pharmacological research with these animals. We measured the area-distance relationships by AR of nasal cavities postmortem in five guinea pigs (Duncan Hartley, 400 g) and five rats (Wistar, 250 g) by using custom-made equipment scaled for the purpose. Nosepieces were made from plastic pipette tips and either inserted into or glued onto the nostrils. We used liquid perfluorocarbon in the fluid-displacement study, and it was carried out subsequent to the acoustic measurements. We found for guinea pigs that AR measured a mean volume of 98 mm3 (95–100 mm3) (mean and 95% confidence interval) of the first 2 cm of the cavity. FDM measured a mean volume of 146 mm3 (117–175 mm3), meaning that AR only measured 70% (50–90) of the volume by FDM. For rats, the volume from 0 to 2 cm was 58 mm3 (55–61 mm3) by AR and 73 mm3 (60–87 mm3) by FDM, resulting in AR only measuring 83% (66–100%) of volume by FDM (see Table 2 ). We conclude that absolute nasal cavity dimensions are underestimated by AR in guinea pigs and rats. This does not preclude that relative changes may be correctly measured. In vivo trials with AR using rats have not yet been published. The FDM is possibly the most accurate alternative to AR for measurements of the nasal cavity geometry in small laboratory animals, but it can only be used postmortem.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3