Effects of triceps surae muscle strength and tendon stiffness on the reactive dynamic stability and adaptability of older female adults during perturbed walking

Author:

Epro Gaspar12ORCID,McCrum Christopher34ORCID,Mierau Andreas56,Leyendecker Michael5,Brüggemann Gert-Peter27,Karamanidis Kiros1

Affiliation:

1. Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom

2. Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany

3. NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Movement Sciences, Maastricht University, Maastricht, The Netherlands

4. Institute of Movement and Sport Gerontology, German Sport University Cologne, Cologne, Germany

5. Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany

6. Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg

7. Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany

Abstract

This study aimed to examine whether the triceps surae (TS) muscle-tendon unit (MTU) mechanical properties affect gait stability and its reactive adaptation potential to repeated perturbation exposure in older adults. Thirty-four older adults each experienced eight separate unexpected perturbations during treadmill walking, while a motion capture system was used to determine the margin of stability (MoS) and base of support (BoS). Ankle plantar flexor muscle strength and Achilles tendon (AT) stiffness were analyzed using ultrasonography and dynamometry. A median split and separation boundaries classified the subjects into two groups with GroupStrong ( n = 10) showing higher ankle plantar flexor muscle strength (2.26 ± 0.17 vs. 1.47 ± 0.20 N·m/kg, means ± SD; P < 0.001) and AT stiffness (544 ± 75 vs. 429 ± 86 N/mm; P = 0.004) than GroupWeak ( n = 12). The first perturbation caused a negative ΔMoS (MoS in relation to unperturbed baseline walking) at touchdown of perturbed step (PertR), indicating an unstable position. GroupStrong required four recovery steps to return to ΔMoS zero level, whereas GroupWeak was unable to return to baseline within the analyzed steps. However, after repeated perturbations, both groups increased ΔMoS at touchdown of PertR with a similar magnitude. Significant correlations between ΔBoS and ΔMoS at touchdown of the first recovery step and TS MTU capacities (0.41 < r < 0.57; 0.006 < P < 0.048) were found. We conclude that older adults with TS muscle weakness have a diminished ability to control gait stability during unexpected perturbations, increasing their fall risk, but that degeneration in muscle strength and tendon stiffness may not inhibit the ability of the locomotor system to adapt the reactive motor response to repeated perturbations. NEW & NOTEWORTHY Triceps surae muscle weakness and a more compliant Achilles tendon partly limit older adults’ ability to effectively enlarge the base of support and recover dynamic stability after an unexpected perturbation during walking, increasing their fall risk. However, the degeneration in muscle strength and tendon stiffness may not inhibit the ability of the locomotor system to adapt the reactive motor response to repeated perturbations.

Funder

German Sport University Cologne

Universiteit Maastricht (Maastricht University)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3