Interactions of lung stretch, hyperoxia, and MIP-2 production in ventilator-induced lung injury

Author:

Quinn Deborah A.1,Moufarrej Ramzi K.1,Volokhov Alexey1,Hales Charles A.1

Affiliation:

1. Pulmonary/Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114

Abstract

The use of positive pressure mechanical ventilation can cause ventilator-induced lung injury (VILI). We hypothesized that hyperoxia in combination with large tidal volumes (Vt) would accentuate noncardiogenic edema and neutrophil infiltration in VILI and be dependent on stretch-induced macrophage inflammatory protein-2 (MIP-2) production. In rats ventilated with Vt 20 ml/kg, there was pulmonary edema formation that was significantly increased by hyperoxia. Total lung neutrophil infiltration and MIP-2 in bronchoalveolar lavage (BAL) fluid were significantly elevated, in animals exposed to high Vt both on room air (RA) and with hyperoxia. Hyperoxia markedly augmented the migration of neutrophils into the alveoli. Anti-MIP-2 antibody blocked migration of neutrophils into the alveoli in RA by 51% and with hyperoxia by 65%. We concluded that neutrophil migration into the alveoli was dependent on stretch-induced MIP-2 production. Hyperoxia significantly increased edema formation and neutrophil migration into the alveoli with Vt 20 ml/kg, although BAL MIP-2 levels were nearly identical to Vt 20 ml/kg with RA, suggesting that other mechanisms may be involved in hyperoxia-augmented neutrophil alveolar content in VILI.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3