Effects of high PEEP and fluid administration on systemic circulation, pulmonary microcirculation, and alveoli in a canine model

Author:

He Huaiwu1,Hu Qinhe12,Long Yun1,Wang Xu1,Zhang Rui1,Su Longxiang1,Liu Dawei1,Ince Can3

Affiliation:

1. Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China

2. Department of Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, China

3. Department of Intensive Care, Erasmus MC University Hospital Rotterdam, Netherlands

Abstract

This study aimed to determine the response of systemic circulation, pulmonary microcirculation, and alveoli to high positive end-expiratory pressure (PEEP) in a canine model. This study was conducted in nine mixed-breed dogs on mechanical ventilation under anesthesia. The PEEP was initially set at 5 cmH2O (PEEP5), the PEEP was then increased to 25 cmH2O (PEEP25), and then saline was used for fluid loading. Data were obtained at the following time points: PEEP5; PEEP25 prefluid loading; and PEEP25 postfluid loading. The images of subpleural lung microcirculation were assessed by sidestream dark-field microscopy, and the hemodynamic data were collected from pulse contour waveform-derived measurements. Compared with PEEP5, the lung microvascular flow index (MFI, 2.3 ± 0.8 versus 0.9 ± 0.8, P = 0.001), lung perfused vessel density (PVD, 4.2 ± 2 versus 1.5 ± 1.8, P = 0.004), lung proportion of perfused vessel (PPV, 93 ± 14 versus 40 ± 4, P = 0.003), cardiac output (2.5 ± 0.6 versus 1.4 ± 0.5, P = 0.001), and mean blood pressure (116 ± 24 versus 91 ± 31, P = 0.012) were significantly lower at PEEP25 prefluid loading. After fluid loading, there were no significant differences in cardiac output or mean arterial pressure between the PEEP5 and PEEP25 postfluid loading levels. However, the lung microcirculatory MFI, PVD, and PPV at PEEP25 postfluid loading remain lower than at PEEP5. A significant increase in septal thickness was found at PEEP25 postfluid loading relative to septal thickness at PEEP25 prefluid loading (25.98 ± 5.31 versus 40.76 ± 7.9, P = 0.001). Under high PEEP, systemic circulation was restored after fluid loading, but lung microcirculation was not. Moreover, the septal thickness of alveoli significantly increased after fluid loading. NEW & NOTEWORTHY An excessively high positive end-expiratory pressure (PEEP) can impair the systemic circulation and alveolar microcirculation. In the high-PEEP condition, fluid loading restored the systemic circulation but did not affect the impaired lung microcirculation. The septal thickness of the alveoli significantly increased after fluid loading in the high-PEEP condition.

Funder

Young and middle-aged scientific research fund of PUMCH

Natural Science Foundation of Beijing Municipality (Beijing Municipal Natural Science Foundation)

Union youth educator project from PUMC

Fundamental Research Fund for the central Universities

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3