Optimized murine lung preparation for detailed structural evaluation via micro-computed tomography

Author:

Vasilescu Dragoş M.12,Knudsen Lars3,Ochs Matthias3,Weibel Ewald R.4,Hoffman Eric A.1

Affiliation:

1. Department of Radiology, University of Iowa, Iowa City, Iowa;

2. Department of Diagnostic Radiology, Philipps University, Marburg;

3. Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; and

4. Department of Anatomy, Bern University, Bern, Switzerland

Abstract

Utilizing micro-X-ray CT (μCT) imaging, we sought to generate an atlas of in vivo and intact/ex vivo lungs from normal murine strains. In vivo imaging allows visualization of parenchymal density and small airways (15–28 μm/voxel). Ex vivo imaging of the intact lung via μCT allows for improved understanding of the three-dimensional lung architecture at the alveolar level with voxel dimensions of 1–2 μm. μCT requires that air spaces remain air-filled to detect alveolar architecture while in vivo structural geometry of the lungs is maintained. To achieve these requirements, a fixation and imaging methodology that permits nondestructive whole lung ex vivo μCT imaging has been implemented and tested. After in vivo imaging, lungs from supine anesthetized C57Bl/6 mice, at 15, 20, and 25 cmH2O airway pressure, were fixed in situ via vascular perfusion using a two-stage flushing system while held at 20 cmH2O airway pressure. Extracted fixed lungs were air-dried. Whole lung volume was acquired at 1, 7, 21, and >70 days after the lungs were dried and served as validation for fixation stability. No significant shrinkage was observed: +8.95% change from in vivo to fixed lung ( P = 0.12), −1.47% change from day 1 to day 7 ( P = 0.07), −2.51% change from day 1 to day 21 ( P = 0.05), and −4.90% change from day 1 to day 70 and thereafter ( P = 0.04). μCT evaluation showed well-fixed alveoli and capillary beds correlating with histological analysis. A fixation and imaging method has been established for μCT imaging of the murine lung that allows for ex vivo morphometric analysis, representative of the in vivo lung.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3