Selected Contribution: Neuroplasticity in nucleus tractus solitarius neurons after episodic ozone exposure in infant primates

Author:

Chen Chao-Yin1,Bonham Ann C.12,Plopper Charles G.3,Joad Jesse P.4

Affiliation:

1. Departments of Internal Medicine,

2. Pharmacology and Toxicology, and

3. Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, Davis, California 95616

4. Pediatrics, School of Medicine, and

Abstract

Acute ozone exposure evokes adverse respiratory responses, particularly in children. With repeated ozone exposures, however, despite the persistent lung inflammation and increased sensory nerve excitability, the central nervous system reflex responses, i.e., rapid shallow breathing and decreased lung function, adapt, suggesting changes in central nervous system signaling. We determined whether repeated ozone exposures altered the behavior of nucleus tractus solitarius (NTS) neurons where reflex respiratory motor outputs are first coordinated. Whole cell recordings were performed on NTS neurons in brain stem slices from infant monkeys exposed to filtered air or ozone (0.5 ppm, 8 h/day for 5 days every 14 days for 11 episodes). Although episodic ozone exposure depolarized the membrane potential, increased the membrane resistance, and increased neuronal spiking responses to depolarizing current injections ( P < 0.05), it decreased the excitability to vagal sensory fiber activation ( P < 0.05), suggesting a diminished responsiveness to sensory transmission, despite overall increases in excitability. Substance P, implicated in lung and NTS signaling, contributed to the increased responsiveness to current injections but not to the diminished sensory transmission. The finding that NTS neurons undergo plasticity with repeated ozone exposures may help to explain the adaptation of the respiratory motor responses.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3