Spinal AMP kinase activity differentially regulates phrenic motor plasticity

Author:

Perim Raphael Rodrigues1,Fields Daryl P.1,Mitchell Gordon S.1

Affiliation:

1. Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, Florida

Abstract

Acute intermittent hypoxia (AIH) elicits phrenic motor plasticity via multiple distinct cellular mechanisms. With moderate AIH, phrenic motor facilitation (pMF) requires Gq protein-coupled serotonin type 2 receptor activation, ERK MAP kinase activity, and new synthesis of brain-derived neurotrophic factor. In contrast, severe AIH elicits pMF by an adenosine-dependent mechanism that requires exchange protein activated by cAMP, Akt, and mammalian target of rapamycin (mTOR) activity, followed by new tyrosine receptor kinase B protein synthesis; this same pathway is also initiated by Gs protein-coupled serotonin 7 receptors (5-HT7). Because the metabolic sensor AMP-activated protein kinase (AMPK) inhibits mTOR-dependent protein synthesis, and mTOR signaling is necessary for 5-HT7 but not 5-HT2 receptor-induced pMF, we hypothesized that spinal AMPK activity differentially regulates pMF elicited by these distinct receptor subtypes. Serotonin type 2A receptor [5-HT2A; (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride] or 5-HT7 (AS-19) receptor agonists were administered intrathecally at C4 (3 injections, 5-min intervals) while recording integrated phrenic nerve activity in anesthetized, vagotomized, paralyzed, and ventilated rats. Consistent with our hypothesis, spinal AMPK activation with 2-deoxyglucose or metformin blocked 5-HT7, but not 5-HT2A receptor-induced pMF; in both cases, pMF inhibition was reversed by spinal administration of the AMPK inhibitor compound C. Thus, AMPK differentially regulates cellular mechanisms of serotonin-induced phrenic motor plasticity. NEW & NOTEWORTHY Spinal AMP-activated protein kinase (AMPK) overactivity, induced by local 2-deoxyglucose or metformin administration, constrains serotonin 7 (5-HT7) receptor-induced (but not serotonin type 2A receptor-induced) respiratory motor facilitation, indicating that metabolic challenges might regulate specific forms of respiratory motor plasticity. Pharmacological blockade of spinal AMPK activity restores 5-HT7 receptor-induced respiratory motor facilitation in the presence of either 2-deoxyglucose or metformin, showing that AMPK is an important regulator of 5-HT7 receptor-induced respiratory motor plasticity.

Funder

HHS | National Institutes of Health

Evelyn F. McKnight Brain Research Foundation

HHS | NIH | National Heart, Lung, and Blood Institute

United Negro College Fund Special Programs Corporation

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3