Effect of ischemic preconditioning and changing inspired O2 fractions on neuromuscular function during intense exercise

Author:

Halley Samuel L.1,Marshall Paul1,Siegler Jason C.1ORCID

Affiliation:

1. Sport and Exercise Science, School of Health Sciences, Western Sydney University, Sydney, Australia

Abstract

The aim of the present study was to determine whether ischemic preconditioning (IPC)-mediated effects on neuromuscular function are dependent on tissue oxygenation. Eleven resistance-trained males completed four exercise trials (6 sets of 11 repetitions of maximal effort dynamic single-leg extensions) in either normoxic [fraction of inspired oxygen ([Formula: see text]): 21%) or hypoxic [Formula: see text]: 14%] conditions, preceded by treatments of either IPC (3 × 5 min bilateral leg occlusions at 220 mmHg) or sham (3 × 5 min at 20 mmHg). Femoral nerve stimulation was utilized to assess voluntary activation and potentiated twitch characteristics during maximal voluntary contractions (MVCs). Tissue oxygenation (via near-infrared spectroscopy) and surface electromyography activity were measured throughout the exercise task. MVC and twitch torque declined 62 and 54%, respectively (MVC: 96 ± 24 N·m, Cohen’s d = 2.9, P < 0.001; twitch torque: 37 ± 11 N·m, d = 1.6, P < 0.001), between pretrial measurements and the sixth set without reductions in voluntary activation ( P > 0.21); there were no differences between conditions. Tissue oxygenation was reduced in both hypoxic conditions compared with normoxia ( P < 0.001), with an even further reduction of 3% evident in the hypoxic IPC compared with the sham trial (mean decrease 1.8 ± 0.7%, d = 1.0, P < 0.05). IPC did not affect any measure of neuromuscular function regardless of tissue oxygenation. A reduction in [Formula: see text] did invoke a humoral response and improved muscle O2 extraction during exercise, however, it did not manifest into any performance benefit. NEW & NOTEWORTHY Ischemic preconditioning did not affect any facet of neuromuscular function regardless of the degree of tissue oxygenation. Reducing the fraction of inspired oxygen induced localized tissue deoxygenation, subsequently invoking a humoral response, which improved muscle oxygen extraction during exercise. This physiological response, however, did not manifest into any performance benefits.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3