Hypoxic pulmonary hypertension is prevented in rats with common bile duct ligation

Author:

Imamura Masatoshi,Luo Bao,Limbird Jennifer,Vitello Andrea,Oka Masahiko,Ivy D. Dunbar,McMurtry Ivan F.,Garat Chrystelle V.,Fallon Michael B.,Carter Ethan P.

Abstract

Biliary cirrhosis in the rat triggers intrapulmonary vasodilatation and gas-exchange abnormalities that characterize the hepatopulmonary syndrome. This vasodilatation correlates with increased levels of pulmonary microcirculatory endothelial NO synthase (eNOS) and hepatic and plasma endothelin-1 (ET-1). Importantly, during cirrhosis, the pulmonary vascular responses to acute hypoxia are blunted. The purpose of this work was to examine the pulmonary vascular responses and adaptations to the combination of liver cirrhosis and chronic hypoxia (CH). In addition to hemodynamic measurements, we investigated whether pulmonary expression changes of eNOS, ET-1 and its receptors (endothelin A and B), or heme oxygenase 1 in experimental cirrhosis affect the development of hypoxic pulmonary hypertension. We induced cirrhosis in male Sprague-Dawley rats using common bile duct ligation (CBDL) and exposed them to CH (inspired Po2 ≈ 76 Torr) or maintained them in Denver (Den, inspired Po2 ≈ 122 Torr) for 3 wk. Our data show 1) CBDL-CH rats had a persistent blunted hypoxic pulmonary vasoconstriction similar to CBDL-Den; 2) the development of hypoxic pulmonary hypertension was completely prevented in the CBDL-CH rats, as indicated by normal pulmonary arterial pressure and lack of right ventricular hypertrophy and pulmonary arteriole remodeling; and 3) selective increases in expression of ET-1, pulmonary endothelin B receptor, eNOS, and heme oxygenase 1 are potential mechanisms of protection against hypoxic pulmonary hypertension in the CBDL-CH rats. These data demonstrate that unique and undefined hepatic-pulmonary interactions occur during liver cirrhosis and chronic hypoxia. Understanding these interactions may provide important information for the prevention and treatment of pulmonary hypertension.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3