Establishing the V̇o2 versus constant-work-rate relationship from ramp-incremental exercise: simple strategies for an unsolved problem

Author:

Iannetta Danilo1,de Almeida Azevedo Rafael1,Keir Daniel A.2,Murias Juan M.1ORCID

Affiliation:

1. Faculty of Kinesiology, University of Calgary, Calgary, Canada

2. Department of Medicine, University Health Network, Toronto, Canada

Abstract

The dissociation between constant work rate of O2 uptake (V̇o2) and ramp V̇o2 at a given work rate might be mitigated during slowly increasing ramp protocols. This study characterized the V̇o2 dynamics in response to five different ramp protocols and constant-work-rate trials at the maximal metabolic steady state (MMSS) to characterize 1) the V̇o2 gain (G) in the moderate, heavy, and severe domains, 2) the mean response time of V̇o2 (MRT), and 3) the work rates at lactate threshold (LT) and respiratory compensation point (RCP). Eleven young individuals performed five ramp tests (5, 10, 15, 25, and 30 W/min), four to five time-to-exhaustions for critical power estimation, and two to three constant-work-rate trials for confirmation of the work rate at MMSS. G was greatest during the slowest ramp and progressively decreased with increasing ramp slopes (from ~12 to ~8 ml·min−1·W−1, P < 0.05). The MRT was smallest during the slowest ramp slopes and progressively increased with faster ramp slopes (1 ± 1, 2 ± 1, 5 ± 3, and 10 ± 4, 15 ± 6 W, P < 0.05). After “left shifting” the ramp V̇o2 by the MRT, the work rate at LT was constant regardless of the ramp slope (~150 W, P > 0.05). The work rate at MMSS was 215 ± 55 W and was similar and highly correlated with the work rate at RCP during the 5 W/min ramp ( P > 0.05, r = 0.99; Lin’s concordance coefficient = 0.99; bias = −3 W; root mean square error = 6 W). Findings showed that the dynamics of V̇o2 (i.e., G) during ramp exercise explain the apparent dichotomy existing with constant-work-rate exercise. When these dynamics are appropriately “resolved”, LT is constant regardless of the ramp slope of choice, and RCP and MMSS display minimal variations between each other. NEW & NOTEWORTHY This study demonstrates that the dynamics of V̇o2 during ramp-incremental exercise are dependent on the characteristics of the increments in work rate, such that during slow-incrementing ramp protocols the magnitude of the dissociation between ramp V̇o2 and constant V̇o2 at a given work rate is reduced. Accurately accounting for these dynamics ensures correct characterizations of the V̇o2 kinetics at ramp onset and allows appropriate comparisons between ramp and constant-work-rate exercise-derived indexes of exercise intensity.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Heart and Stroke Foundation of Canada

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3