Tibialis anterior muscle fascicle dynamics adequately represent postural sway during standing balance

Author:

Day James T.1,Lichtwark Glen A.1,Cresswell Andrew G.1

Affiliation:

1. The University of Queensland Centre for Sensorimotor Neuroscience, School of Human Movement Studies, Brisbane, Queensland, Australia

Abstract

To maintain a stable, upright posture, the central nervous system (CNS) must integrate sensory information from multiple sources and subsequently generate corrective torque about the ankle joint. Although proprioceptive information from the muscles that cross this joint has been shown to be vital in this process, the specific source of this information remains questionable. Recent research has been focused on the potential role of tibialis anterior (TA) muscle during standing, largely due to the lack of modulation of its activity throughout the sway cycle. Ten young, healthy subjects were asked to stand normally under varying conditions, for periods of 60 s. During these trials, intramuscular electromyographic (EMG) activity and the fascicle length of three distinct anatomical regions of TA were sampled synchronously with kinematic data regarding sway position. In the quiet standing conditions, TA muscle activity was unmodulated and fascicle length changes in each region were tightly coupled with changes in sway position. In the active sway condition, more EMG activity was observed in TA and the fascicle length changes were decoupled from sway position. No regional specific differences in correlation values were observed, contrasting previous observations. The ability of the fascicles to follow sway position builds upon the suggestion that TA is well placed to provide accurate, straightforward sensory information to the CNS. As previously suggested, through reciprocal inhibition, afferent information from TA could help to regulate plantar flexor torque at relevant phases of the sway cycle. The proprioceptive role of TA appears to become complicated during more challenging conditions.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3