Extended high-frequency partial liquid ventilation in lung injury: gas exchange, injury quantification, and vapor loss

Author:

Doctor Allan,Al-Khadra Eman,Tan Puay,Watson Kenneth F.,Diesen Diana L.,Workman Lisa J.,Thompson John E.,Rose Charles E.,Arnold John H.

Abstract

High-frequency oscillatory ventilation with perflubron (PFB) reportedly improves pulmonary mechanics and gas exchange and attenuates lung injury. We explored PFB evaporative loss kinetics, intrapulmonary PFB distribution, and dosing strategies during 15 h of high-frequency oscillation (HFO)-partial liquid ventilation (PLV). After saline lavage lung injury, 15 swine were rescued with high-frequency oscillatory ventilation ( n = 5), or in addition received 10 ml/kg PFB delivered to dependent lung [ n = 5, PLV-compartmented (PLV(C))] or 10 ml/kg distributed uniformly within the lung [ n = 5, PLV(U)]. In the PLV(C) group, PFB vapor loss was replaced. ANOVA revealed an unsustained improvement in oxygenation index in the PLV(U) group ( P = 0.04); the reduction in oxygenation index correlated with PFB losses. Although tissue myeloperoxidase activity was reduced globally by HFO-PLV ( P < 0.01) and regional lung injury scores (lung injury scores) in dependent lung were improved ( P = 0.05), global lung injury scores were improved by HFO-PLV ( P < 0.05) only in atelectasis, edema, and alveolar distension but not in cumulative score. In our model, markers of inflammation and lung injury were attenuated by HFO-PLV, and it appears that uniform intrapulmonary PFB distribution optimized gas exchange during HFO-PLV; additionally, monitoring PFB evaporative loss appears necessary to stabilize intrapulmonary PFB volume.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3