Combined administration of hyperbaric oxygen and hydroxocobalamin improves cerebral metabolism after acute cyanide poisoning in rats

Author:

Hansen M. B.12,Olsen N. V.34,Hyldegaard O.12

Affiliation:

1. Laboratory for Hyperbaric Medicine, Department of Anesthesia, Centre of Head and Orthopedics, Copenhagen University Hospital, Rigshospitalet, Denmark;

2. Hyperbaric Unit, Department of Anesthesia, Centre of Head and Orthopedics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark;

3. Department of Neuroanesthesia, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Denmark; and

4. Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark

Abstract

Hyperbaric oxygen therapy (HBOT) or intravenous hydroxocobalamin (OHCob) both abolish cyanide (CN)-induced surges in interstitial brain lactate and glucose concentrations. HBOT has been shown to induce a delayed increase in whole blood CN concentrations, whereas OHCob may act as an intravascular CN scavenger. Additionally, HBOT may prevent respiratory distress and restore blood pressure during CN intoxication, an effect not seen with OHCob administration. In this report, we evaluated the combined effects of HBOT and OHCob on interstitial lactate, glucose, and glycerol concentrations as well as lactate-to-pyruvate ratio in rat brain by means of microdialysis during acute CN poisoning. Anesthetized rats were allocated to three groups: 1) vehicle (1.2 ml isotonic NaCl intra-arterially); 2) potassium CN (5.4 mg/kg intra-arterially); 3) potassium CN, OHCob (100 mg/kg intra-arterially) and subsequent HBOT (284 kPa in 90 min). OHCob and HBOT significantly attenuated the acute surges in interstitial cerebral lactate, glucose, and glycerol concentrations compared with the intoxicated rats given no treatment. Furthermore, the combined treatment resulted in consistent low lactate, glucose, and glycerol concentrations, as well as in low lactate-to-pyruvate ratios compared with CN intoxicated controls. In rats receiving OHCob and HBOT, respiration improved and cyanosis disappeared, with subsequent stabilization of mean arterial blood pressure. The present findings indicate that a combined administration of OHCob and HBOT has a beneficial and persistent effect on the cerebral metabolism during CN intoxication.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3