Endurance training-induced changes in alkali light chain patterns in type IIB fibers of the rat

Author:

Wada Masanobu1,Inashima Shuichiro1,Yamada Takashi2,Matsunaga Satoshi3

Affiliation:

1. Faculty of Integrated Arts and Sciences,

2. Faculty of Medicine, Hiroshima University, Higashihiroshima, 739-8521; and

3. Institute of Health Sciences and Physical Education, Osaka City University, Osaka, Japan 558-8585

Abstract

The effects of endurance training on the expression of myosin were electrophoretically analyzed in the deep portion of vastus lateralis muscle from the rat. A 10-wk running program led to increases ( P < 0.01) in myosin heavy chain (MHC) 2a and 2d with a decrease ( P < 0.01) in MHC2b. Training also evoked a rearrangement of the isomyosin pattern with decreases in fast isomyosin (FM) 1 ( P < 0.01) and FM2 ( P < 0.05) and a rise in intermediate isomyosin ( P < 0.01). These changes were accompanied by a 61% decrease ( P < 0.01) in myosin light chain (MLC) 3F (11.8 ± 2.7 vs. 4.6 ± 4.2%). Two-dimensional electrophoresis made it possible to separate the triplet of isomyosins (FMb) consisting of MHC2b. Training elicited a 26% decrease ( P < 0.05) in the FM1b fraction within FMb, i.e., FM1b/(FM1b + FM2b + FM3b) (24.2 ± 5.5 vs. 18.0 ± 4.3%). These changes resulted in a 10% decrease ( P < 0.05) in the MLC3Ffraction, i.e., MLC3F/(MLC1F + MLC3F), in FMb (44.9 ± 4.5 vs. 40.3 ± 3.2%). These results suggest that endurance training may exert the depressive effect on the contractile velocity of type IIB fibers and that a training-induced decrease in the contractile velocity of whole muscle may be caused by alterations in fast alkali MLC complements within a given fiber type as well as by transitions in MHC-based fiber populations.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3