Affiliation:
1. Department of Kinesiology, University of Maryland, College Park, Maryland;
2. Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania;
3. Division of Gerontology, University of Maryland School of Medicine, and Baltimore VA Medical Center Geriatric Research, Education and Clinical Center, Baltimore, Maryland
Abstract
Our objective was to test the hypothesis that a common polymorphism in the hepatic lipase (HL) gene ( LIPC -514C>T, rs1800588) influences aerobic exercise training-induced changes in TG, very-low-density lipoprotein (VLDL), and high-density lipoprotein (HDL) through genotype-specific increases in lipoprotein lipase (LPL) activity and that sex may affect these responses. Seventy-six sedentary overweight to obese men and women aged 50–75 yr at risk for coronary heart disease (CHD) underwent a 24-wk prospective study of the LIPC -514 genotype-specific effects of exercise training on lipoproteins measured enzymatically and by nuclear magnetic resonance, postheparin LPL and HL activities, body composition by dual energy x-ray absorptiometry and computer tomography scan, and aerobic capacity. CT genotype subjects had higher baseline total cholesterol, HDL-C, HDL2-C, large HDL, HDL particle size, and large LDL than CC homozygotes. Exercise training elicited genotype-specific decreases in VLDL-TG (−22 vs. +7%; P < 0.05; CC vs. CT, respectively), total VLDL and medium VLDL, and increases in HDL-C (7 vs. 4%; P < 0.03) and HDL3-C with significant genotype×sex interactions for the changes in HDL-C and HDL3-C ( P values = 0.01–0.02). There were also genotype-specific changes in LPL (+23 vs. −6%; P < 0.05) and HL (+7 vs. −24%; P < 0.01) activities, with LPL increasing only in CC subjects ( P < 0.006) and HL decreasing only in CT subjects ( P < 0.007). Reductions in TG, VLDL-TG, large VLDL, and medium VLDL and increases in HDL3-C and small HDL particles correlated significantly with changes in LPL, but not HL, activity only in CC subjects. This suggests that the LIPC -514C>T variant significantly affects training-induced anti-atherogenic changes in VLDL-TG, VLDL particles, and HDL through an association with increased LPL activity in CC subjects, which could guide therapeutic strategies to reduce CHD risk.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献