Volume dependence of airway and tissue impedances in mice

Author:

Sly Peter D.1,Collins Rachel A.1,Thamrin Cindy1,Turner Debra J.1,Hantos Zoltan12

Affiliation:

1. Division of Clinical Sciences, Telethon Institute for Child Health Research, School of Child Health, University of Western Australia, West Perth, Western Australia 6875, Australia; and

2. Department of Medical Informatics and Engineering, University of Szeged, Szeged A-6720, Hungary

Abstract

We measured respiratory input impedance (1–25 Hz) in mice and obtained parameters for airway and tissue mechanics by model fitting. Lung volume was varied by inflating to airway opening pressure (Pao) between 0 and 20 cmH2O. The expected pattern of changes in respiratory mechanics with increasing lung volume was seen: a progressive fall in airway resistance and increases in the coefficients of tissue damping and elastance. A surprising pattern was seen in hysteresivity (η), with a plateau at low lung volumes (Pao < 10 cmH2O), a sharp fall occurring between 10 and 15 cmH2O, and η approaching a second (lower) plateau at higher lung volumes. Studies designed to elucidate the mechanism(s) behind this behavior revealed that this was not due to chest wall properties, differences in volume history at low lung volume, time dependence of volume recruitment, or surface-acting forces. Our data are consistent with the notion that at low lung volumes the mechanics of the tissue matrix determine η, whereas at high lung volumes the properties of individual fibers (collagen) become more important.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3