Effect of localized microclimate heating on peripheral skin temperatures and manual dexterity during cold exposure

Author:

Castellani John W.1ORCID,Yurkevicius Beau R.1,Jones Myra L.1,Driscoll Timothy J.1,Cowell Courtney M.1,Smith Laurel1,Xu Xiaojiang1,O’Brien Catherine1

Affiliation:

1. United States Army Research Institute of Environmental Medicine, Natick, Massachusetts

Abstract

Reduced dexterity is a major problem in cold weather, with a need for a countermeasure that increases hand (Thand) and finger (Tfing) temperatures and improves dexterity. The purpose of this study was to determine whether electric heat (set point, 42°C) applied to the forearm (ARM, 82 W), face (FACE, 9.2 W), or combination of both (COMB, 91.2 W), either at the beginning of cold exposure (COLD; 0.5°C, 120 min; 2 clo insulation, seated, bare-handed) or after Tfing fell to 10.5°C [delayed trials (D)], improves Thand, Tfing, dexterity, and finger key pinch strength (Sfing). Volunteers ( n = 8; 26 ± 9 yr) completed 7 experimental trials in COLD: ARM, ARM-D, FACE, FACE-D, COMB, COMB-D, and no heating (CON). Temperatures were measured before (BASE) and throughout COLD. Tests of dexterity [Purdue Pegboard assembly (PP) and magazine loading (MAGLOAD)] and Sfing were measured at BASE and after 45 and 90 min of COLD. Data presented are at minute 90. Thand was warmer ( P < 0.001) during ARM (18.0 ± 2.6°C) and COMB (18.9 ± 2.0°C) versus CON (15.3 ± 1.5°C) and FACE (15.8 ± 1.5°C) for heating that was initiated at the beginning of COLD. Tfing was higher ( P < 0.04) during COMB (12.7 ± 5.1°C) versus CON (9.7 ± 2.1°C) and FACE (8.9 ± 2.2°C). The change from BASE for PP (no. of pieces) was less ( P < 0.005) in COMB (−4.5 ± 3.3) and ARM (−5.0 ± 6.0) versus CON (−13.0 ± 7.3) and FACE (−10.0 ± 8.3), and for MAGLOAD, it tended ( P = 0.06) to be less in COMB (−8.9 ± 6.2 cartridges) versus CON (−14.8 ± 3.7 cartridges). There was no change in Sfing from BASE (10.5 kg) to minute 90 in ARM or COMB (0.7 ± 1.4 and −0.2 ± 1.7 kg, respectively) but a decrease ( P < 0.01) in CON and FACE (−2.1 ± 2.0 and −1.6 ± 1.9 kg, respectively). There were no differences in Thand, Tfing, dexterity, and Sfing at minute 90 when comparing heating that was initiated at the beginning of COLD versus delayed heating. In conclusion, heating using either COMB or ARM, compared with CON and FACE, improved Thand and Tfing and reduced the decline in dexterity by 20%–50% and Sfing by 90%. Furthermore, delayed heating had no deleterious effect on Thand, Tfing, dexterity, and Sfing compared with heating that started at the beginning of cold exposure. NEW & NOTEWORTHY The present study demonstrated that, during sedentary cold air exposure, localized heating that was applied from the beginning of cold exposure on the forearm increases hand and finger temperatures and finger strength, leading to subsequent improvements in manual dexterity. In addition, localized heating that was delayed until finger temperatures cooled significantly also caused higher peripheral temperatures, leading to better strength and manual dexterity, compared with no heating.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3