Activation pattern of ACE2/Ang-(1–7) and ACE/Ang II pathway in course of heart failure assessed by multiparametric MRI in vivo in Tgαq*44 mice

Author:

Tyrankiewicz Urszula1,Olkowicz Mariola23,Skórka Tomasz4,Jablonska Magdalena4,Orzylowska Anna4,Bar Anna1,Gonet Michal4,Berkowicz Piotr1,Jasinski Krzysztof4,Zoladz Jerzy A.5,Smolenski Ryszard T.2,Chlopicki Stefan16

Affiliation:

1. Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland

2. Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland

3. Department of Biotechnology, Poznan University of Life Sciences, Poznan, Poland

4. Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

5. Department of Muscle Physiology, University School of Physical Education, Krakow, Poland

6. Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland

Abstract

Here, we analyzed systemic (plasma) and local (heart/aorta) changes in ACE/ACE-2 balance in Tgαq*44 mice in course of heart failure (HF). Tgαq*44 mice with cardiomyocyte-specific Gαq overexpression and late onset of HF were analyzed at different age for angiotensin pattern in plasma, heart, and aorta using liquid chromatography/mass spectrometry, for progression of HF by in vivo magnetic resonance imaging under isoflurane anesthesia, and for physical activity by voluntary wheel running. Six-month-old Tgαq*44 mice displayed decreased ventricle radial strains and impaired left atrial function. At 8–10 mo, Tgαq*44 mice showed impaired systolic performance and reduced voluntary wheel running but exhibited preserved inotropic reserve. At 12 mo, Tgαq*44 mice demonstrated a severe impairment of basal cardiac performance and modestly compromised inotropic reserve with reduced voluntary wheel running. Angiotensin analysis in plasma revealed an increase in concentration of angiotensin-(1–7) in 6- to 10-mo-old Tgαq*44 mice. However, in 12- to 14-mo-old Tgαq*44 mice, increased angiotensin II was noted with a concomitant increase in Ang III, Ang IV, angiotensin A, and angiotensin-(1–10). The pattern of changes in the heart and aorta was also compatible with activation of ACE2, followed by activation of the ACE pathway. In conclusion, mice with cardiomyocyte Gαq protein overexpression develop HF that is associated with activation of the systemic and the local ACE/Ang II pathway. However, it is counterbalanced by a prominent ACE2/Ang-(1–7) activation, possibly allowing to delay decompensation. NEW & NOTEWORTHY Changes in ACE/ACE-2 balance were analyzed based on measurements of a panel of nine angiotensins in plasma, heart, and aorta of Tgαq*44 mice in relation to progression of heart failure (HF) characterized by multiparametric MRI and exercise performance. The early stage of HF was associated with upregulation of the ACE2/angiotensin-(1–7) pathway, whereas the end-stage HF was associated with downregulation of ACE2/angiotensin-(1–7) and upregulation of the ACE/Ang II pathway. ACE/ACE-2 balance seems to determine the decompensation of HF in this model.

Funder

Narodowym Centrum Nauki (National Science Centre, Poland)

European regional Developpment Found

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3