The cerebrovascular response to lower-body negative pressure vs. head-up tilt

Author:

Bronzwaer Anne-Sophie G. T.12,Verbree Jasper3,Stok Wim J.24,Daemen Mat J. A. P.5,van Buchem Mark A.3,van Osch Matthias J. P.3,van Lieshout Johannes J.1246

Affiliation:

1. Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands;

2. Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands;

3. Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands;

4. Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands;

5. Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; and

6. Medical Research Center/Arthritis Research United Kingdom Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham, United Kingdom

Abstract

Lower-body negative pressure (LBNP) has been proposed as a MRI-compatible surrogate for orthostatic stress. Although the effects of LBNP on cerebral hemodynamic behavior have been considered to reflect those of orthostatic stress, a direct comparison with actual orthostasis is lacking. We assessed the effects of LBNP (−50 mmHg) vs. head-up tilt (HUT; at 70°) in 10 healthy subjects (5 female) on transcranial Doppler-determined cerebral blood flow velocity (CBF v) in the middle cerebral artery and cerebral perfusion pressure (CPP) as estimated from the blood pressure signal (finger plethysmography). CPP was maintained during LBNP but decreased after 2 min in response to HUT, leading to an ~15% difference in CPP between LBNP and HUT ( P ≤ 0.020). Mean CBF v initially decreased similarly in response to LBNP and for HUT, but, from minute 3 on, the decline became ~50% smaller ( P ≤ 0.029) during LBNP. The reduction in end-tidal Pco2 partial pressure (PetCO2) was comparable but with an earlier return toward baseline values in response to LBNP but not during HUT ( P = 0.008). We consider the larger decrease in CBF v during HUT vs. LBNP attributable to the pronounced reduction in PetCO2 and to gravitational influences on CPP, and this should be taken into account when applying LBNP as an MRI-compatible orthostatic stress modality. NEW & NOTEWORTHY Lower-body negative pressure (LBNP) has the potential to serve as a MRI-compatible surrogate of orthostatic stress but a comparison with actual orthostasis was lacking. This study showed that the pronounced reduction in end-tidal Pco2 together with gravitational effects on the brain circulation lead to a larger decline in cerebral blood flow velocity in response to head-up tilt than during lower-body negative pressure. This should be taken into account when employing lower-body negative pressure as MRI-compatible alternative to orthostatic stress.

Funder

Rebrandt Institute of Cardiovascular Science

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3