Confidence in the curve: Establishing instantaneous cost mapping techniques using bilateral ankle exoskeletons

Author:

Koller Jeffrey R.1,Gates Deanna H.2,Ferris Daniel P.2,Remy C. David1

Affiliation:

1. Department of Mechanical Engineering at the University of Michigan, Ann Arbor, Michigan; and

2. School of Kinesiology at the University of Michigan, Ann Arbor, Michigan

Abstract

Lower extremity robotic prostheses and exoskeletons can require tuning a large number of control parameters on a subject-specific basis to reduce users’ metabolic power during locomotion. We refer to the functional relationship between control parameter configurations and users’ metabolic power as the metabolic cost landscape. Standard practice for estimating a metabolic cost landscape, and thus identifying optimal parameter configurations, is to vary control parameters while measuring steady-state metabolic power during walking. This approach is time consuming, tedious, and inefficient. We have developed an instantaneous cost mapping analysis that allows for an estimate of the metabolic cost landscape without the explicit need for steady-state measurements. Here we present novel methods to quantify the confidence in an estimated metabolic cost landscape, allowing for an objective subject-specific comparison of protocols regardless of which metabolic analysis is used. We validated these techniques by estimating metabolic cost landscapes for healthy subjects walking with bilateral robotic ankle exoskeletons using a standard practice protocol and two innovative protocols that use an instantaneous cost mapping analysis. All cost landscapes were a function of the devices’ actuation timing. Results showed that for this device a protocol using an instantaneous cost mapping analysis could accurately identify optimal parameter configurations in 20 min, where the standard practice protocol required 42 min. Additionally, using an instantaneous cost mapping analysis with the standard practice’s parameter exploration significantly improved fit confidence. These methods could greatly improve real-time optimization of robotic assistive devices or studies focused on biomechanical manipulations of locomotion. NEW & NOTEWORTHY We are presenting novel subject-specific metabolic cost landscape confidence analyses. These confidence analyses can greatly improve experimental design, intersubject analysis, and the comparison of landscape mapping protocols. We validated these methods by mapping subject-specific metabolic cost landscapes using bilateral ankle exoskeletons and are presenting the first full study using instantaneous cost mapping techniques to optimally tune an assistive robotic device.

Funder

National Science Foundation (NSF)

Lockheed Martin Corporation

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference40 articles.

1. Powered Ankle--Foot Prosthesis Improves Walking Metabolic Economy

2. Bion X. Instructions for Use BiOM T2 Ankle. Bedford, MA: BionX Medical Technologies, 2015, 12.

3. Estimating changes in metabolic power from EMG

4. Metabolic Energy Cost of Unrestrained Walking

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3