Gravitational deposition in a rhythmically expanding and contracting alveolus

Author:

Haber S.,Yitzhak D.,Tsuda A.

Abstract

In a previous simulation, our laboratory demonstrated that the flow induced by a rhythmically expanding and contracting alveolus is highly complex (Haber S, Butler JP, Brenner H, Emanuel I, and Tsuda A, J Fluid Mech 405: 243–268, 2000). Based on these earlier findings, we hypothesize that the trajectories and deposition of aerosols inside the alveoli differ substantially from those previously predicted. To test this hypothesis, trajectories of fine particles (0.5–2.5 μm in diameter) moving in the foregoing alveolar flow field and simultaneously subjected to the gravity field were simulated. The results show that alveolar wall motion is crucial in determining the enhancement of aerosol deposition inside the alveoli. In particular, 0.5- to 1-μm-diameter particles are sensitive to the detailed alveolar flow structure (e.g., recirculating flow), as they undergo gravity-induced convective mixing and deposition. Accordingly, deposition concentrations within each alveolus are nonuniform, with preferentially higher densities near the alveolar entrance ring, consistent with physiological observations. Deposition patterns along the acinar tree are also nonuniform, with higher deposition in the first half of the acinar generations. This is a result of the combined effects of enhanced alveolar deposition in the proximal region of the acinus due to alveoli expansion and contraction and reduction in the number of particles remaining in the gas phase down the acinar tree. We conclude that the cyclically expanding and contracting motion of alveoli plays an important role in determining gravitational deposition in the pulmonary acinus.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference36 articles.

1. Inspiratory vs expiratory aerosol deposition in excised dog lungs

2. Biran A and Breiner M. Matlab 5 for Engineers. Boston, MA: Addison-Wesley, 1999.

3. Brain JD and Valberg PA. Deposition of aerosol in the respiratory tract. Am Rev Respir Dis 120: 1325-1373, 1979.

4. Effect of convective stretching and folding on aerosol mixing deep in the lung, assessed by approximate entropy

5. A realistic two-dimensional model of aerosol transport and deposition in the alveolar zone of the human lung

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3