B cell homeostasis is maintained during long-duration spaceflight

Author:

Spielmann Guillaume1,Agha Nadia2,Kunz Hawley23,Simpson Richard J.2456,Crucian Brian7,Mehta Satish7,Laughlin Mitzi28,Campbell John19

Affiliation:

1. School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana

2. Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas

3. Division of Endocrinology and Metabolism, Mayo Clinic, College of Medicine, Rochester, Minnesota

4. Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona

5. Department of Pediatrics, The University of Arizona, Tucson, Arizona

6. Department of Immunobiology, The University of Arizona, Tucson, Arizona

7. National Aeronautics and Space Administration–Johnson Space Center, Houston, Texas

8. Fondren Orthopedic Group, Fondren Orthopedic Research Institute, Houston, Texas

9. Department for Health, University of Bath, Bath, United Kingdom

Abstract

Long-duration spaceflights reportedly induce immune dysregulation, which is considered a risk to astronaut safety and mission success. Recent studies have examined the impact of spaceflight on markers of adaptive and innate immunity, but no study, to date, has comprehensively evaluated humoral immunity and serological markers of B cell function. The aim of this study was to characterize changes in B cell numbers and phenotypes, along with plasma Igs and polyclonal free light chains (FLCs)—near-“real-time” biomarkers of Ig synthesis—in response to an ~6-mo mission to the International Space Station (ISS). Whole-blood samples were collected before flight, during flight (“Early flight,” “Mid-flight,” and “Late flight”), immediately upon return, and during a recovery period (R + 18, R + 30/R + 33, and R + 60/R + 66) from 23 ISS crew members. B Cell counts and phenotypes were measured throughout the duration of the mission, along with total plasma Ig and FLC levels. There was no effect of spaceflight on the number and proportion of the different B cell subsets. There was no difference in kappa FLC between preflight samples and either in-flight or recovery samples ( P > 0.05), and only a marginal reduction was observed in lambda FLC levels upon return to Earth ( P < 0.05). Furthermore, IgG and IgM remained unchanged during and after spaceflight compared with preflight values ( P > 0.05). Of note, plasma IgA concentrations were elevated in-flight compared with baseline and recovery values ( P < 0.05). These results indicate that B cell homeostasis is maintained during long-duration spaceflight, advocating for potential in-flight vaccination as viable countermeasures against viral reactivation during exploration-class missions.

Funder

National Aeronautics and Space Administration (NASA)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3