Increased surface tension decreases pulmonary capillary volume and compliance

Author:

Topulos George P.12,Brown Richard E.1,Butler James P.12

Affiliation:

1. Harvard Medical School, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital and

2. Physiology Program, Harvard School of Public Health, Boston, Massachusetts 02115

Abstract

Increased surface tension is an important component of several respiratory diseases, but its effects on pulmonary capillary mechanics are incompletely understood. We measured capillary volume and specific compliance before and after increasing surface tension with nebulized siloxane in excised dog lungs. The change in surface tension was sufficient to increase lung recoil 5 cmH2O at 50% total lung capacity. Increased surface tension decreased both capillary volume and specific compliance. The changes in capillary volume and compliance were greatest at the lung volumes at which the surface tension change was greatest. Near functional residual capacity, capillary volume postsiloxane was ∼30% of control. Presiloxane capillary specific compliance was ∼7%/cmH2O near functional residual capacity and ∼2.5%/cmH2O near total lung capacity. Postsiloxane capillary-specific compliance was 3%/cmH2O, and was independent of lung volume. We conclude that in addition to their well-known effects on lung mechanics, changes in surface tension also have important effects on capillary mechanics. We speculate that these changes may in turn affect ventilation and perfusion, worsen gas exchange, and alter leukocyte sequestration.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3