Elevated oxidative stress and endothelial dysfunction in right coronary artery of right ventricular hypertrophy

Author:

Lu Xiao1,Dang Charles Q.2,Guo Xiaomei1,Molloi Sabee3,Wassall Cynthia D.4,Kemple Marvin D.4,Kassab Ghassan S.1567

Affiliation:

1. Departments of 1Biomedical Engineering and

2. Departments of 3Biomedical Engineering and

3. Radiological Sciences, University of California, Irvine, California; and

4. Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana;

5. Departments of 5Surgery and

6. Cellular and Integrative Physiology, and

7. Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, Indiana

Abstract

Remodeling of right coronary artery (RCA) occurs during right ventricular hypertrophy (RVH) induced by banding of the pulmonary artery (PA). The effect of RVH on RCA endothelial function and reactive oxygen species (ROS) in vessel wall remains unclear. A swine RVH model ( n = 12 pigs) induced by PA banding was used to study RCA endothelial function and ROS level. To obtain longitudinal coronary hemodynamic and geometric data, digital subtraction angiography was used during the progression of RVH. Blood flow in the RCA increased by 82% and lumen diameter of RCA increased by 22% over a 4-wk period of RVH. The increase in blood flow and the commensurate increase in diameter resulted in a constant wall shear stress in RCA throughout the RVH period. ROS was elevated by ∼100% in RCA after 4 wk of PA banding. The expressions of p47phox, NADPH oxidase (NOX1, NOX2, and NOX4) were upregulated in the range of 20–300% in RCA of RVH. The endothelial function was compromised in RCA of RVH as attributed to insufficient endothelial nitric oxide synthase cofactor tetrahydrobiopterin. In vivo angiographic analysis suggests an increased basal tone in the RCA during RVH. In conclusion, stretch due to outward remodeling of RCA during RVH (at constant wall shear stress), similar to vessel stretch in hypertension, appears to induce ROS elevation, endothelial dysfunction, and an increase in basal tone.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3