Myriocin prevents muscle ceramide accumulation but not muscle fiber atrophy during short-term mechanical unloading

Author:

Salaun Erwann1,Lefeuvre-Orfila Luz1,Cavey Thibault23,Martin Brice1,Turlin Bruno24,Ropert Martine23,Loreal Olivier2,Derbré Frédéric1

Affiliation:

1. Laboratory “Movement Sport and Health Sciences,” University Rennes 2-ENS Rennes, Bruz, France;

2. INSERM UMR 991, Iron and the Liver Team Rennes, Faculty of Medicine, University of Rennes 1, Rennes, France;

3. Laboratory of Biochemistry, University Hospital Pontchaillou, Rennes, France;

4. Department of Pathology, University Hospital Pontchaillou, Rennes, France

Abstract

Bedridden patients in intensive care unit or after surgery intervention commonly develop skeletal muscle weakness. The latter is promoted by a variety of prolonged hospitalization-associated conditions. Muscle disuse is the most ubiquitous and contributes to rapid skeletal muscle atrophy and progressive functional strength reduction. Disuse causes a reduction in fatty acid oxidation, leading to its accumulation in skeletal muscle. We hypothesized that muscle fatty acid accumulation could stimulate ceramide synthesis and promote skeletal muscle weakness. Therefore, the present study was designed to determine the effects of sphingolipid metabolism on skeletal muscle atrophy induced by 7 days of disuse. For this purpose, male Wistar rats were treated with myriocin, an inhibitor of de novo synthesis of ceramides, and subjected to hindlimb unloading (HU) for 7 days. Soleus muscles were assayed for fiber diameter, ceramide levels, protein degradation, and apoptosis signaling. Serum and liver were removed to evaluate the potential hepatoxicity of myriocin treatment. We found that HU increases content of saturated C16:0 and C18:0 ceramides and decreases soleus muscle weight and fiber diameter. HU increased the level of polyubiquitinated proteins and induced apoptosis in skeletal muscle. Despite a prevention of C16:0 and C18:0 muscle accumulation, myriocin treatment did not prevent skeletal muscle atrophy and concomitant induction of apoptosis and proteolysis. Moreover, myriocin treatment increased serum transaminases and induced hepatocyte necrosis. These data highlight that inhibition of de novo synthesis of ceramides during immobilization is not an efficient strategy to prevent skeletal muscle atrophy and exerts adverse effects like hepatotoxicity.

Funder

Conseil Régional de Bretagne (Brittany Council)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3