Activation of mast cells by systemic hypoxia, but not by local hypoxia, mediates increased leukocyte-endothelial adherence in cremaster venules

Author:

Dix Randy1,Orth Teresa1,Allen Julie1,Wood John G.1,Gonzalez Norberto C.1

Affiliation:

1. Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160

Abstract

Systemic hypoxia, produced by lowering inspired Po2, induces a rapid inflammation in several microcirculations, including cremaster muscle. Mast cell activation is a necessary element of this response. Selective reduction of cremaster microvascular Po2(PmO2) with normal systemic arterial Po2(PaO2; cremaster hypoxia/systemic normoxia), however, does not elicit increased leukocyte-endothelial adherence (LEA) in cremaster venules. This could be due to a short time of leukocyte exposure to the hypoxic cremaster environment. Conversely, LEA increases when PaO2is lowered, while cremaster PmO2remains high (cremaster normoxia/systemic hypoxia). An alternative explanation of these results is that a mediator released from a central site during systemic hypoxia initiates the inflammatory cascade. We hypothesized that if this is the case, cremaster mast cells would be activated during cremaster normoxia/systemic hypoxia, but not during cremaster hypoxia/systemic normoxia. The microcirculation of rat cremaster muscles was visualized by using intravital microscopy. Cremaster PmO2was measured with a phosphorescence quenching method. Cremaster hypoxia/systemic normoxia (PmO27 ± 1 Torr, PaO287 ± 2 Torr) did not increase LEA; however, topical application of the mast cell activator compound 48/80 under these conditions did increase LEA. The effect of compound 48/80 on LEA was blocked by topical cromolyn, a mast cell stabilizer. LEA increased during cremaster normoxia/systemic hypoxia, (PmO264 ± 5 Torr, PaO233 ± 2 Torr); this increase was blocked by topical cromolyn. The results suggest that mast cell stimulation occurs only when PaO2is reduced, independent of cremaster PmO2, and support the idea of a mediator that is released during systemic hypoxia and initiates the inflammatory cascade.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3