Defining the characteristic relationship between arterial pressure and cerebral flow

Author:

Tan Can Ozan1

Affiliation:

1. Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachussetts; and Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Boston, Massachussetts

Abstract

Reliable assessment of cerebrovascular effectiveness in buffering against pressure fluctuations may have important implications for the timing and the outcome of therapy after adverse cerebrovascular events. Although linear approaches may indicate the presence or absence of cerebral autoregulation, they are inadequate to describe its characteristics and its effectiveness. Establishing a simple yet robust methodology to reliably measure the effectiveness of cerebral autoregulation could provide a tool to guide screening and clinical options to characterize and treat adverse cerebrovascular events associated with alterations in cerebral perfusion. To test the utility of one such methodology, an oscillatory lower body negative pressure of 30–40 mmHg was used at six frequencies from 0.03 to 0.08 Hz in 43 healthy volunteers, and the pressure-flow relation and the effectiveness of autoregulation was quantified using projection pursuit regression. Projection pursuit regression explained the majority of the relationship between pressure and cerebral blood flow fluctuations and revealed its nature consistently across individuals and across separate study days. The nature of this relationship entailed an autoregulatory region wherein slow arterial pressure fluctuations are effectively counterregulated and two passive regions wherein pressure fluctuations resulted in parallel changes in flow. The effectiveness of autoregulation was significantly reduced as pressure fluctuations became faster. These results demonstrate the characteristic relationship between arterial pressure and cerebral blood flow. Furthermore, the methodology utilized in this study provides a tool that can provide unique insight to integrated cerebrovascular control and may allow diagnosis of physiological alterations underlying impaired cerebral autoregulation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3