End-expiratory and tidal volumes measured in conscious mice using single projection x-ray images

Author:

Lai-Fook Stephen J.,Houtz Pamela K.,Lai Yih-Loong

Abstract

The evaluation of airway resistance (Raw) in conscious mice requires both end-expiratory (Ve) and tidal volumes (Vt) (Lai-Fook SJ and Lai YL. J Appl Physiol 98: 2204–2218, 2005). In anesthetized BALB/c mice we measured lung area (AL) from ventral-to-dorsal x-ray images taken at FRC (Ve) and after air inflation with 0.25 and 0.50 ml (ΔVL). Total lung volume (VL) described by equation: VL = ΔVL + VFRC = KAL1.5 assumed uniform (isotropic) inflation. Total VFRC averaged 0.55 ml, consisting of 0.10 ml tissue, 0.21 ml blood and 0.24 ml air. K averaged 1.84. In conscious mice in a sealed box, we measured the peak-to-peak box pressure excursions (ΔPb) and x-rays during several cycles. K was used to convert measured AL1.5 to VL values. We calculated Ve and Vt from the plot of VL vs. cos(α − φ). Phase angle α was the minimum point of the Pb cycle to the x-ray exposure. Phase difference between the Pb and VL cycles (φ) was measured from ΔPb values using both room- and body-temperature humidified box air. A similar analysis was used after aerosol exposures to bronchoconstrictor methacholine (Mch), except that φ depended also on increased Raw. In conscious mice, Ve (0.24 ml) doubled after Mch (50–125 mg/ml) aerosol exposure with constant Vt, frequency (f), ΔPb, and Raw. In anesthetized mice, in addition to an increased Ve, repeated 100 mg/ml Mch exposures increased both ΔPb and Raw and decreased f to apnea in 10 min. Thus conscious mice adapted to Mch by limiting Raw, while anesthesia resulted in airway closure followed by diaphragm fatigue and failure.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3