Chronic paraplegia-induced muscle atrophy downregulates the mTOR/S6K1 signaling pathway

Author:

Dreyer Hans C.,Glynn Erin L.,Lujan Heidi L.,Fry Christopher S.,DiCarlo Stephen E.,Rasmussen Blake B.

Abstract

Ribosomal S6 kinase 1 (S6K1) is a downstream component of the mammalian target of rapamycin (mTOR) signaling pathway and plays a regulatory role in translation initiation, protein synthesis, and muscle hypertrophy. AMP-activated protein kinase (AMPK) is a cellular energy sensor, a negative regulator of mTOR, and an inhibitor of protein synthesis. The purpose of this study was to determine whether the hypertrophy/cell growth-associated mTOR pathway was downregulated during muscle atrophy associated with chronic paraplegia. Soleus muscle was collected from male Sprague-Dawley rats 10 wk following complete T4–T5 spinal cord transection (paraplegic) and from sham-operated (control) rats. We utilized immunoprecipitation and Western blotting techniques to measure upstream [AMPK, Akt/protein kinase B (PKB)] and downstream components of the mTOR signaling pathway [mTOR, S6K1, SKAR, 4E-binding protein 1 (4E-BP1), and eukaryotic initiation factor (eIF) 4G and 2α]. Paraplegia was associated with significant soleus muscle atrophy (174 ± 8 vs. 240 ± 13 mg; P < 0.05). There was a reduction in phosphorylation of mTOR, S6K1, and eIF4G ( P < 0.05) with no change in Akt/PKB or 4E-BP1 ( P > 0.05). Total protein abundance of mTOR, S6K1, eIF2α, and Akt/PKB was decreased, and increased for SKAR ( P < 0.05), whereas 4E-BP1 and eIF4G did not change ( P > 0.05). S6K1 activity was significantly reduced in the paraplegic group ( P < 0.05); however, AMPKα2 activity was not altered (3.5 ± 0.4 vs. 3.7 ± 0.5 pmol·mg−1·min−1, control vs. paraplegic rats). We conclude that paraplegia-induced muscle atrophy in rats is associated with a general downregulation of the mTOR signaling pathway. Therefore, in addition to upregulation of atrophy signaling during muscle wasting, downregulation of muscle cell growth/hypertrophy-associated signaling appears to be an important component of long-term muscle loss.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3