Oxidative phosphorylation: unique regulatory mechanism and role in metabolic homeostasis

Author:

Wilson David F.1

Affiliation:

1. Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

Abstract

Oxidative phosphorylation is the primary source of metabolic energy, in the form of ATP, in higher plants and animals, but its regulation in vivo is not well understood. A model has been developed for oxidative phosphorylation in vivo that predicts behavior patterns that are both distinctive and consistent with experimental measurements of metabolism in intact cells and tissues. A major regulatory parameter is the energy state ([ATP]/[ADP][Pi], where brackets denote concentration). Under physiological conditions, the [ATP] and [Pi] are ~100 times that of [ADP], and most of the change in energy state is through change in [ADP]. The rate of oxidative phosphorylation ( y-axis) increases slowly with increasing [ADP] until a threshold is reached and then increases very rapidly and linearly with further increase in [ADP]. The dependence on [ADP] can be characterized by a threshold [ADP] (T) and control strength (CS), the normalized slope above threshold (Δ y/(Δ x/T). For normoxic cells without creatine kinase, T is ~30 µM and CS is ~10 s−1. Myocytes and cells with larger ranges of rates of ATP utilization, however, have the same [ADP]- and [AMP]-dependent mechanisms regulating metabolism and gene expression. To compensate, these cells have creatine kinase, and hydrolysis/synthesis of creatine phosphate increases the change in [Pi] and thereby CS. Cells with creatine kinase have [ADP] and [AMP], which are similar to cells without creatine kinase, despite the large differences in metabolic rate. 31P measurements in human muscles during work-to-rest and rest-to-work transitions are consistent with predictions of the model. NEW & NOTEWORTHY A model developed for oxidative phosphorylation in vivo is shown to predict behavior patterns that are both novel and consistent with experimental measurements of metabolism in working muscle and other cells. The dependence of the rate on ADP concentration shows a pronounced threshold with a steep, nearly linear increase above the threshold. The threshold determines the homeostatic set point, and the slope above threshold determines how much metabolism changes in response to varied energy demand.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3