Physical activity: does long-term, high-intensity exercise in horses result in tendon degeneration?

Author:

Birch Helen L.,Wilson Alan M.,Goodship Allen E.

Abstract

This study explores the hypothesis that high-intensity exercise induces degenerative changes in the injury-prone equine superficial digital flexor tendon (SDFT), but not in the rarely injured common digital extensor tendon (CDET). The horse represents a large-animal model that is applicable to human tendon and ligament physiology and pathology. Twelve age-matched female horses undertook galloping exercise three times a week with trotting exercise on alternative days (high-intensity group, n = 6) or only walking exercise (low-intensity group, n = 6) for 18 mo. The SDFT, suspensory ligament, deep digital flexor tendon, and CDET were harvested from the forelimb. Tissue from the mid-metacarpal region of the right limb tendons was analyzed for water, DNA, sulfated glycosaminoglycan and collagen content, collagen type III-to-I ratios, collagen cross-links, and tissue fluorescence. Left limb tendons were mechanically tested to failure. The analyses showed matrix composition to have considerable diversity between the functionally different structures. In addition, the specific structures responded differently to the imposed exercise. High-intensity training resulted in a significant decrease in the GAG content in the SDFT, but no change in collagen content, despite a decrease in collagen fibril diameters. There were no signs of degeneration or change in mechanical properties of the SDFT. The CDET had a lower water content following high-intensity training and a higher elastic modulus. Long-term, high-intensity training in skeletally mature individuals results in changes that suggest accelerated aging in the injury-prone SDFT and adaptation in the CDET.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3