Author:
Birch Helen L.,Wilson Alan M.,Goodship Allen E.
Abstract
This study explores the hypothesis that high-intensity exercise induces degenerative changes in the injury-prone equine superficial digital flexor tendon (SDFT), but not in the rarely injured common digital extensor tendon (CDET). The horse represents a large-animal model that is applicable to human tendon and ligament physiology and pathology. Twelve age-matched female horses undertook galloping exercise three times a week with trotting exercise on alternative days (high-intensity group, n = 6) or only walking exercise (low-intensity group, n = 6) for 18 mo. The SDFT, suspensory ligament, deep digital flexor tendon, and CDET were harvested from the forelimb. Tissue from the mid-metacarpal region of the right limb tendons was analyzed for water, DNA, sulfated glycosaminoglycan and collagen content, collagen type III-to-I ratios, collagen cross-links, and tissue fluorescence. Left limb tendons were mechanically tested to failure. The analyses showed matrix composition to have considerable diversity between the functionally different structures. In addition, the specific structures responded differently to the imposed exercise. High-intensity training resulted in a significant decrease in the GAG content in the SDFT, but no change in collagen content, despite a decrease in collagen fibril diameters. There were no signs of degeneration or change in mechanical properties of the SDFT. The CDET had a lower water content following high-intensity training and a higher elastic modulus. Long-term, high-intensity training in skeletally mature individuals results in changes that suggest accelerated aging in the injury-prone SDFT and adaptation in the CDET.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献