Phenotypical transitions and Ca2+activation properties in human muscle fibers: effects of a 60-day bed rest and countermeasures

Author:

Mounier Yvonne,Tiffreau Vincent,Montel Valérie,Bastide Bruno,Stevens Laurence

Abstract

Muscle biopsies were taken from soleus and vastus lateralis before and after a 60-day bed rest (BR) to examine expression changes in the regulatory proteins of the thin filament and in contractile function. Twenty-four women separated in three groups were submitted to BR or a combined protocol of resistance and aerobic exercises during BR or received a supplementation of amino acids during BR. Ca2+-tension relationships were established in single skinned fibers identified by their myosin heavy chain and troponin C isoform expressions. Expression patterns of regulatory proteins were analyzed on muscle pieces. For both muscles, BR produced similar decreases in slow and fast fiber diameters but larger decreases in P0maximal forces in slow than in fast fibers. Specific forces were decreased in slow soleus and vastus fibers, which displayed a reduction in Ca2+affinity. These changes were accompanied by slow-to-fast transitions in regulatory proteins, with troponins C and T appearing as sensitive markers of unloading. Exercises prevented the changes in fiber diameters and forces and counteracted most of the slow-to-fast transitions. The nutrition program had a morphological beneficial effect on slow fibers. However, these fibers still presented decreases in specific P0after BR. Phenotypical transitions due to BR were not prevented by amino acids. Finally, in vastus lateralis muscle, BR induced a decrease in O-glycosylation level that was prevented by exercise and attenuated by nutrition. In conclusion, this study has addressed for the first time in women the respective efficiencies of two countermeasures associated with BR on muscle properties and regulatory protein expression.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3