Control of breathing and volitional respiratory rhythm in humans

Author:

Haouzi Philippe,Bell Harold J.

Abstract

When breathing frequency (f) is imperceptibly increased during a volitionally paced respiratory rhythm imposed by an auditory signal, tidal volume (Vt) decreases such that minute ventilation (V̇e) rises according to f-induced dead-space ventilation changes ( 18 ). As a result, significant change in alveolar ventilation and Pco2 are prevented as f varies. The present study was performed to determine what regulatory properties are retained by the respiratory control system, wherein the spontaneous automatic rhythmic activity is replaced by a volitionally paced rhythm. Six volunteers were asked to trigger each breath cycle on hearing a brief auditory signal. The time interval between subsequent auditory signals was imperceptibly changed for 10–15 min, during 1) air breathing ( condition 1), 2) the addition of a 300 ml of instrumental dead space ( condition 2), 3) an increase in the inspired level of CO2 ( condition 3), and 4) light exercise ( condition 4). We found that as f was slowly increased the elaborated Vt decreased in accordance to the background level of CO2 and metabolic rate. Indeed, for any given breath duration, Vt was shifted upward in condition 2 vs. 1, whereas the slope of Vt changes according to the volitionally rhythm was much steeper in conditions 3 and 4 vs. 1. The resulting changes in V̇e offset any f-induced changes in dead-space ventilation in all conditions. We conclude that there is an inherent, fundamental mechanism that elaborates Vt based on f when imposed by the premotor cortex in humans. The chemoreflex and exercise drive to breath interacts with this cortically mediated rhythm maintaining alveolar rather than V̇e constant as f changes. The implications of our findings are discussed in the context of our current understanding of the central generation of breathing rhythm.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3